В результате нараставших протестов со стороны учеников Брайля его шрифт был наконец принят в Национальной школе, но только через два года после его смерти от туберкулеза в возрасте 43 лет. Вскоре шрифт распространился по всему франкоязычному миру, но за его пределы шагнул далеко не сразу: так, в США его официально не принимали до 1916 года. Сегодня шрифт Брайля – это мировой стандарт. В мире применяются различные его адаптации, в том числе и для языков с отличным от латинского алфавитом (греческого и русского), и для языков, использующих иероглифы (китайского); есть механические прессы Брайля и даже компьютерные интерфейсы для этого шрифта.
Средняя скорость чтения людей, хорошо владеющих шрифтом Брайля, – около 120 слов в минуту, а самые проворные успевают прочесть до 200 слов в минуту.[43] Это требует невероятно быстрой обработки тактильной информации: каждый символ шрифта Брайля нужно успеть распознать примерно за двадцатую долю секунды (50 миллисекунд). Когда Луи Брайль разрабатывал свою систему письма, он ничего не знал о свойствах пачиниевых телец, окончаний Меркеля или рецепторных нервов. Он просто пользовался собственным осязательным опытом, тщательно расставляя точки – достаточно далеко друг от друга, чтобы одну точку не перепутали с соседней, и достаточно близко, чтобы всю решетку со сторонами 2 и 3 можно было воспринять кончиком пальца.
Какие из четырех механорецепторов работают при дешифровке символов Брайля? Чтобы ответить на этот вопрос, Кеннет Джонсон и его коллеги из медицинской школы Университета Джона Хопкинса записали сигналы отдельных нервных волокон исследуемого при сканировании им кончиками пальцев символов шрифта Брайля. Полученные электрические импульсы были собраны в матрицу, и таким образом удалось визуализировать информацию, переданную четырьмя различными типами нервных волокон (рис. 2.5А). Этот замечательный эксперимент показал, что точки Брайля достоверно распознаются только волокнами Меркеля. Волокна Мейснера сформировали довольно размытое изображение, а рецепторы, расположенные глубже (пачиниевы тельца и окончания Руффини), вообще не смогли распознать точки Брайля. Когда эксперимент повторили с уменьшенными выпуклыми буквами Гаюи, волокна Меркеля тоже справились с задачей, но полученное нейронное изображение отражало неопределенность, изначально заложенную в системе Гаюи. Посмотрев на рисунок 2.5В, можно заметить, что нейронные ответы на некоторые буквы легко перепутать: C, G, o и Q почти одинаковы; R очень напоминает Н, а P похожа на F. И действительно, когда участников эксперимента попросили назвать латинские буквы после их осязания, они чаще всего путали буквы этого ряда.
Рис. 2.5. Реакция одиночных аксонов, расположенных на кончиках пальцев человека, на шрифт Брайля и выпуклые латинские буквы Гаюи. (А) Символы Брайля «читались» пальцами со скоростью примерно 60 миллиметров в секунду и записывалась соответствующая электрическая активность волокон разных типов. Изображение создавалось так: когда в волокне порождался импульс, ставилась точка и проводилась горизонтальная линия. Затем шаблон Брайля вертикально перемещался на 0,2 миллиметра и вновь сканировался, процесс повторялся – получилось растровое изображение. Символы Брайля достоверно удалось распознать только клеткам Меркеля. Реакция телец Мейснера оказалась более размытой, а глубоко расположенные рецепторы – тельца Пачини и Руффини – вообще не дали информации о точках Брайля. Печатается в адаптированном виде по: Phillips J. P., Johansson R. S., Johnson K. O. Representation of Braille characters in human nerve fibres // Experimental Brain Research 81. 1990. 589–592, с разрешения Springer. (В) Реакция волокон Меркеля на выпуклые латинские буквы достаточна, чтобы что-то понять, но возможны ошибки в интерпретации. Печатается по: Vega-Bermudez F., Johnson K. O., Hsiao S. S. Human tactile pattern recognition: active versus passive touch, velocity effects, and patterns of confusion. Journal of Neurophisiology 65. 1991. 531–546, с разрешения Американского физиологического общества