независимой и зависимой переменных в регрессионном анализе.

Первое. Характер распределения независимых переменных в регрессионном моделировании неактуален, и поэтому нет смысла его определять.

Второе. Регрессионный анализ очень требователен к характеру распределения зависимой переменной. В регрессионном моделировании распределение вероятностей зависимой переменной должно подчиняться требованиям нормального закона распределения (распределения Гаусса)9.

Так как цель учебного пособия заключается не только в ознакомлении со статистико-математическими технологиями проведения регрессионного анализа, но и в повышении понимания методологических основ проведения такого анализа в психологии, вопросу о господстве нормального закона распределения в проявлении психологических переменных уделим несколько больше внимания.

Дело в том, что во всех информационных источниках по применению статистики в психологии принято считать, что если эмпирические переменные распределены «не совсем нормально», то это результат ошибок измерения, выборки и т. п., а не реального положения вещей. А. Д. Наследов по этому поводу отмечает: «Закон нормального распределения имеет целый ряд очень важных следствий, к которым мы не раз еще будем обращаться. Сейчас же отметим, что если при изучении некоторого свойства мы произвели его измерение на выборке испытуемых и получили отличающееся от нормального распределение, то это значит, что либо выборка нерепрезентативна генеральной совокупности, либо измерения произведены не в шкале равных интервалов»10

Конец ознакомительного фрагмента.

Купите полную версию книги и продолжайте чтение
Купить полную книгу