В процессе восстановления после потенциала действия натрий-калиевый насос выводит избыточные ионы калия наружу, а недостающие ионы натрия возвращает внутрь клетки, восстанавливая их исходную концентрацию по обе стороны мембраны. Этот механизм требует около 70% всей энергии, необходимой для клеточной активности.
Для возникновения потенциала действия необходимо достаточное количество ионов натрия в окружающей клетку среде. Большие потери натрия, например, через пот при длительных физических упражнениях в жаркую погоду, могут нарушить нормальную функцию нервных и мышечных клеток, что приведет к снижению работоспособности.
Недостаток кислорода в тканях, например, при большом дефиците кислорода во время интенсивной физической нагрузки, также нарушает возбуждение клеток из-за проблем с поступлением ионов натрия, что делает клетку невозбудимой. Этот процесс инактивации натриевого механизма зависит от концентрации ионов кальция (Ca2+) в крови. Повышение уровня Ca2+ снижает возбудимость клеток, а его недостаток увеличивает её, что может вызвать непроизвольные мышечные судороги.
Проведение возбуждения
Потенциалы действия, также известные как импульсы возбуждения, обладают удивительной способностью распространяться вдоль нервных и мышечных волокон.
В этом удивительном процессе, потенциал действия действует как сильный раздражитель для соседних участков волокна. Его амплитуда обычно в 5—6 раз превышает пороговую величину деполяризации, обеспечивая высокую скорость и надежность передачи.
При взаимодействии между возбужденной зоной, где внешние заряды волокна противоположны внутренним, и соседним не возбужденным участком мембраны, возникают электрические токи, называемые местными токами. Эти токи вызывают деполяризацию соседнего участка, увеличивая его ионную проницаемость и вызывая потенциал действия. В исходной точке возбуждения потенциал покоя восстанавливается. Таким образом, энергия передается через местные токи, распространяя возбуждение на соседние участки нервного волокна, аналогично проведению нервного импульса. В процессе продвижения амплитуда потенциала действия не уменьшается, независимо от длины нерва.
С эволюцией от безмякотных (без миелиновой оболочки) нервных волокон к мякотным (с миелиновой оболочкой), скорость проведения нервного импульса значительно возросла. Для безмякотных волокон характерно непрерывное проведение возбуждения, которое охватывает каждый участок нерва. В мякотных волокнах, почти полностью покрытых изолирующей миелиновой оболочкой, ионные токи могут проходить только через незакрытые участки мембраны – узелки Ранвье. В этом процессе возбуждение перескакивает от одного узелка к другому, что и дало название «сальтаторное проведение» (лат. saltus – прыжок). Этот способ не только увеличил скорость передачи, но и сделал процесс более эффективным. Возбуждение охватывает лишь небольшую часть поверхности мембраны волокна, что означает меньшее энергопотребление на транспорт ионов через мембрану во время возбуждения и восстановления.
Скорость проведения нервных импульсов в разных волокнах может варьироваться. Более крупные нервные волокна проводят сигналы быстрее: расстояния между узелками Ранвье больше, а скачки длиннее. Наибольшую скорость имеют двигательные и проприоцептивные афферентные волокна – до 100 м/с. В то время как тонкие симпатические волокна (особенно необвитые миелином) проводят сигналы медленнее – от 0.5 до 15 м/с.
Во время возникновения потенциала действия мембрана полностью теряет возбудимость. Это состояние называется абсолютной рефрактерностью, за которой следует относительная рефрактерность, когда новый потенциал действия может возникнуть только при очень сильном раздражении. Постепенно возбудимость восстанавливается до исходного уровня, завершая этот цикл возбуждения и передачи сигнала.