– Из обучающего набора выбирается случайный батч реальных изображений.

– Собирается батч из реальных и сгенерированных изображений.

– Дискриминатор обучается на этом батче с метками "реальные" и "сгенерированные" соответственно.

– Генератор обучается на сгенерированном шуме с метками "реальные".

– Обучение происходит чередованием обучения дискриминатора и генератора, чтобы они соревновались друг с другом.

7. Обучение GAN:

– GAN собирается из генератора и дискриминатора в последовательную модель `gan`.

– Обучение GAN происходит вызовом метода `compile` с функцией потерь `binary_crossentropy` и оптимизатором `generator_optimizer`.

Обучение GAN (Generative Adversarial Network) представляет собой процесс обучения двух компонентов сети: генератора (Generator) и дискриминатора (Discriminator), взаимодействующих друг с другом в конкурентной игре.

Вначале создается последовательная модель GAN, объединяющая генератор и дискриминатор. Это делается путем последовательного объединения слоев генератора и слоев дискриминатора в единую модель. Это позволяет обращаться к генератору и дискриминатору как к единой сущности и проводить общую оптимизацию в процессе обучения.

 Для обучения GAN определяется функция потерь (loss function), которая определяет, насколько хорошо работает GAN. В случае GAN, функция потерь использует обычно бинарную кросс-энтропию (binary_crossentropy), которая является распространенным выбором для бинарных классификационных задач.

 Также выбирается оптимизатор (optimizer), который отвечает за обновление весов сети в процессе обучения с учетом значения функции потерь. В данном случае, указанный `generator_optimizer` используется для оптимизации параметров генератора.

Обучение GAN происходит чередованием двух основных этапов – обучение генератора и обучение дискриминатора. На каждом этапе происходит подача различных данных и обновление соответствующих параметров моделей. Главная идея заключается в том, что генератор стремится создать реалистичные данные, которые дискриминатор не сможет отличить от реальных, в то время как дискриминатор старается правильно классифицировать как реальные, так и сгенерированные данные.

В процессе обучения GAN происходит динамический баланс между генератором и дискриминатором, и оба компонента учатся улучшать свои навыки в противостоянии друг другу. Целью обучения GAN является достижение равновесия (equilibrium), когда генератор создает реалистичные данные, а дискриминатор неспособен точно отличить сгенерированные данные от реальных.

8. Запуск обучения:

– Обучение GAN происходит путем вызова функции `train_gan`, которая реализует процесс обучения и выводит значения функций потерь на каждой итерации.

Функция `train_gan` в приведенном выше коде выполняет обучение GAN (Generative Adversarial Network) путем последовательного обучения генератора и дискриминатора на заданном наборе данных (dataset) в течение определенного числа эпох (epochs). Здесь предполагается, что у вас уже есть предопределенная архитектура GAN, которая объединяет генератор и дискриминатор в модель `gan`.

Давайте рассмотрим шаги, которые выполняются в функции `train_gan`:

1. Разделение генератора и дискриминатора:

В начале функции, модель GAN разделяется на генератор (Generator) и дискриминатор (Discriminator). Это делается для последующего отдельного обучения каждого из компонентов на различных данных и с разными метками.

2. Цикл по эпохам:

Функция `train_gan` содержит вложенный цикл, который итерируется по заданному числу эпох (epochs). Каждая эпоха представляет собой один полный проход по всему набору данных.