Следующим шагом стало избавление от корня, и так как действие в одной части уравнения требует выполнения такого же действия в другой части для сохранения равносильности, Гиппас возвел в квадрат обе части уравнения и после перестановки получил следующее уравнение: 2Q>2 = P>2. На первый взгляд это уравнение мало помогает делу, но Гиппас заметил то, что – в силу своей тривиальности – прежде игнорировалось: P>2 ровно в два раза больше, чем Q>2. Но P>2 может быть четным числом только в том случае, если четным числом является P, а значит, его можно обозначить как 2К. Но вернувшись к нашей предыдущей записи, мы получаем 2Q>2 = (2K)>2 = 4K>2 и, таким образом, можем утверждать, что Q>2 = 2K>2. Снова использовав тот же довод, мы можем утверждать, что Q, по необходимости, является четным числом. Но этого не может быть, так как мы уже определили, что дробь P/Q является несократимой, а отношение двух четных чисел всегда является сократимой дробью. Следовательно, мы пришли к неразрешимому противоречию. Это был поразительный вывод: просто предположив, что совершенное соотношение существует, Гиппас показал, что это допущение приводит к абсурду.

Единственным выходом из противоречия было заключить, что для выражения корня квадратного из 2 не существует рационального числа, то есть – не существует красивого и магического целочисленного соотношения. На горизонте замаячил демон иррациональности, потрясший веру до основания; святости божественной пропорциональности был нанесен сокрушительный удар. Мало того: последовательное применение метода – доказательства от противного – показало, что √2 не является дьявольским исключением, единственной аномалией, для существования которой можно было придумать рациональное обоснование. Наоборот, новый метод доказательства позволил обнаружить и новый класс чисел – чисел, непредставимых в форме точного соотношения и названных иррациональными. Вдобавок, словно для того, чтобы окончательно уязвить пифагорейцев, та же логика привела и к другому открытию: множество иррациональных чисел бесконечно больше, чем множество всех рациональных чисел[8]

Купите полную версию книги и продолжайте чтение
Купить полную книгу