Рис. 2.5. Типы клеток в улитковом ядре. Воспроизводится в адаптированном виде из книги The Mammalian Auditory Pathway: Neuroanatomy с разрешения издательства Springer Nature.
Улитковое ядро. Первой структурой на пути к слуховой коре после возникновения электрического сигнала в месте соединения улитки со слуховым нервом является улитковое ядро. В нем содержится множество типов клеток с замечательными названиями (кустовидные, веретенообразные, октопусные!)[20] и характеристиками ответа[21], необходимыми для выполнения их работы. На рис. 2.5 я показываю, как выглядят эти клетки, просто потому, что мне они кажутся изумительными[22].
По мере восхождения по цепочке от уха к мозгу ответ нейронов на звуковой сигнал становится все более специализированным, благодаря принципу торможения. В отсутствие звука нейроны не полностью неактивны, они производят спонтанные импульсы. Ответом на звуковой сигнал может быть как возбуждение (выше частоты спонтанных импульсов), так и торможение (снижение активности ниже частоты спонтанных импульсов). Когда раздается звук с определенной частотой, пульсация настроенных на эту частоту нейронов начинает превышать спонтанный уровень. А пульсация нейронов, настроенных на близкие частоты, замедляется и становится ниже спонтанного уровня. Торможение позволяет выделить некоторые компоненты звука, повышая точность и настройку.
К области специализации улиткового ядра относится амплитудная модуляция (АМ)[23]. Клетки этой структуры специализируются на АМ некоторых частот. Высота голоса определяется АМ. Когда мы говорим, наш голос подвергается АМ в соответствии с колебаниями наших голосовых связок (с их открытием и закрытием).
После настройки в улитковом ядре нейронные импульсы проходят к следующей структуре цепи, однако это путешествие длится дольше, поскольку на этом уровне впервые нейронные электрические сигналы от каждого уха направляются в оба полушария мозга.
Верхний оливарный комплекс. Когда речь заходит о точности во времени, слуховая система по-настоящему восхищает и оставляет далеко позади систему зрительного восприятия. Микросекундные нюансы звука требуют микросекундной точности мозга. Волшебство временной настройки в значительной степени обеспечивается верхним оливарным комплексом, особенно в отношении бинауральной (bi – два, aural – ушной) обработки, локализации источника звука и избирательного улавливания конкретных звуков из звукового окружения.
Любой звук, источник которого находится не прямо перед нами, достигает двух ушей в разное время и с разной громкостью. Если звук доносится слева, он достигает левого уха на какую-то долю секунды раньше, чем правого уха. Если источник звука хоть в какой-то степени сдвинут относительно центрального положения, эта разность во времени может составлять порядка одной стотысячной доли секунды (10 мкс). Кроме того, слева он будет чуть громче, чем справа, поскольку его путь был чуть короче и его не преграждала голова. Эти различия во времени прибытия и громкости звука, достигающего двух ушей, вносят разный вклад в зависимости от частоты звука. Низкочастотные звуки с большей длиной волны проделывают путь вокруг головы с меньшей потерей громкости. Однако такой звук прибывает в два уха не одновременно, и мы способны уловить это различие в несколько микросекунд. Напротив, высокочастотный звук блокируется