Микромеханические системы и элементы Андрей Кашкаров
© Кашкаров А. П., 2018
© Оформление, издание, ДМК Пресс, 2018
К читателю
Монтировать, обслуживать и эксплуатировать устройства, рассмотренные в этой книге и рекомендуемые к повторению, могут ответственные радиолюбители. Это лица, ознакомленные со всеми предупреждениями и замечаниями по безопасности, а также эксплуатационными и монтажными процедурами, изложенными в соответствующих инструкциях по охране труда и наставлениях (руководствах) по электробезопасности:
• лица, прошедшие обучение и получившие полномочия на монтаж, обслуживание и эксплуатацию электро- и радиооборудования и микромагнитоэлектронных систем с учетом требований правил техники безопасности;
• лица, прошедшие обучение и способные использовать все необходимые защитные средства;
• лица, прошедшие обучение и способные оказать пострадавшим от электрического тока первую (доврачебную) медицинскую помощь.
Надежная и безопасная работа рекомендуемых в книге устройств зависит от исправности радиокомпонентов, грамотной сборки, соблюдения правил выполнения монтажа (особенно в устройствах, где применяются полевые транзисторы с управляющим напряжением) и своевременного технического обслуживания (регламента) электронных устройств и систем.
Меры безопасности
Чтобы рекомендованные в книге устройства долго вам служили, необходимо соблюдать указания по технике безопасности.
Во избежание опасности возгорания и поражения электрическим током перед первым включением электрических устройств, питающихся от напряжения 220 В осветительной сети, а также после замены деталей необходимо при отключенном напряжении внимательно осмотреть монтажную плату с элементами, проверить правильность соединений (в соответствии с электрической схемой).
Подавать питание можно только после того, как вы удостоверитесь в правильности монтажа. Все устройства и узлы, рекомендованные читателям в этой книге, проверены автором на полное соответствие стандартам безопасности.
Автор не несет ответственности за повреждения устройств и травмы, полученные вследствие неправильной эксплуатации рекомендованных конструкций.
Авторские права
Информация, включенная в данную книгу, является собственностью автора и не может копироваться или тиражироваться любыми способами, любыми лицами и организациями без письменного разрешения автора и издателя, с которым заключен авторский договор.
Автор оставляет за собой право совершенствовать приведенные в книге радиоэлектронные устройства и узлы, внося в них изменения и дополнения, не ухудшающие их эксплуатационных характеристик, без предварительного уведомления читателей.
Автор (и издатель) не несут ответственности за любые убытки, как единовременные, так и последующие, вызванные наличием ошибок в монтаже, включая типографские, электронные, арифметические и другие ошибки.
Преимущество технологии МЭМС
Описание существующих и разрабатываемых типов гироскопических чувствительных элементов с использованием магнитоэлектронных и микроэлектромеханических систем заняло бы несколько увесистых томов и много часов драгоценного читательского внимания. Поэтому в этой книге в формате квинтэссенции приведены наиболее известные и современные датчики и системы, применяемые в различных областях техники, и не только электронной. Описаны физические основы функционирования преобразователей магнитного поля (ПМП). Рассматриваются особенности применения различных ПМП (элементов Холла, магниторезисторов и др.), приводятся схемы сопряжения приборов с внешними цепями и устройствами. Информация о принципах работы магниточувствительных (МЧМС) и магнитоуправляемых (МУМ) интегральных схем, а также об особенностях их применения с приведением функциональных схем, параметров и характеристик МЧМС и МУМ дана с опорой на проверенные источники.
1. Гироскопы и акселерометры
За несколько лет широкое распространение по всему миру получили датчики, основанные на микроэлектромеханических системах, называемых МЭМС. В этот ряд входят гироскопы и акселерометры. Популярность этих современных устройств в электронном исполнении обусловлена рядом факторов, основными из которых являются доступность и простота их использования, относительно низкая цена и малые габариты. МЭМС-датчики, как правило, оснащаются интегрированной электроникой обработки сигнала и не имеют движущихся частей, «результат показаний» таких датчиков нетрудно интерпретировать для различных устройств анализа данных и автоматики, устройств управления силовыми электрическими цепями. Высокая надежность и способность обеспечивать стабильные показания в жестких условиях окружающей среды (перепады температур, удары, влажность, вибрация, электромагнитные и высокочастотные помехи) – еще один качественный аргумент для использования электронных гироскопов и акселерометров на основе МЭМС-датчиков.
1.1. Описание и принцип действия гироскопа
Термин гироскоп происходит от «наблюдатель вращений» (от греч. gyros – круг, gyrou – кружусь, вращаюсь и scopeo – смотрю, наблюдаю), предложен в 1852 году французским ученым Леоном Фуко при изобретении прибора для демонстрации вращения Земли вокруг своей оси. Фуко поместил вращающийся маховик в некоторое устройство, называемое кардановым подвесом, поэтому долгое время слово гироскоп использовалось для обозначения быстро закрученного вращающегося симметричного твердого тела. По закону ньютоновой механики, скорость поворота оси гироскопа в пространстве обратно пропорциональна его собственной угловой скорости, и, следовательно, ось быстро закрученного гироскопа поворачивается столь медленно, что в отдельном интервале времени конструкцию используют в качестве указателя неизменного направления в пространстве. И хотя опыт с первым гироскопом оказался не вполне удачным, морские и военные применения гироскопов усовершенствовали первоначальную конструкцию Фуко весьма быстрыми темпами.
Примерно через полтора века гироскопами уже называли широкий класс приборов; сейчас термин гироскоп используется для названия устройств, содержащих материальный объект, совершающий быстрые периодические движения. В результате этих движений устройство становится чувствительным к вращению в инерциальном пространстве. При таком понимании слова гироскоп для него уже необязательно наличие симметричного массивного быстро вращающегося ротора, подвешенного без трения таким образом, чтобы его центр масс совпадал с центром подвеса.
Гироскопы разделяют на измерительные и силовые. Силовые служат для создания моментов сил, приложенных к основанию, на котором установлен гироприбор, а измерительные предназначены для определения параметров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и т. д.).
1.1.1. Самый простой гироскоп
Простейшим гироскопом, с необыкновенными свойствами которого мы знакомимся еще в детстве, является волчок. Парадоксальность поведения волчка заключается в его сопротивлении изменить направление оси вращения. При действии внешней силы ось волчка (гироскопа) двигается в направлении, перпендикулярном вектору силы. Поэтому вращающийся волчок не падает, а его ось описывает конус вокруг вертикали; это движение называется регулярной прецессией тяжелого твердого тела.
Медленное движение вектора собственного кинетического момента гироскопа под действием моментов внешних сил называется прецессией гироскопа и описывается векторным уравнением
w × H = M.
Здесь w – вектор угловой скорости прецессии, H – вектор собственного кинетического момента гироскопа, M – ортогональная к H составляющая вектора момента внешних сил, приложенных к гироскопу. Момент сил, приложенных со стороны ротора к подшипникам оси собственного вращения ротора, возникающий при изменении направления оси, называют гироскопическим моментом. Погрешность гироскопа измеряется скоростью ухода его оси от первоначального положения. Свободный гироскоп функционирует идеально лишь в том случае, если внешний момент M равен нулю.
1.1.2. Виды гироскопов и практическое применение
Высокоточный гироскоп может уверенно (с погрешностью 5 %) измерять скорость вращения Земли, однако если бы этот гироскоп оказался на Луне, то ему не удалось бы обнаружить вращение Луны, происходящее в 28 раз медленнее вращения Земли. Во времена Фуко не существовало средств для раскрутки ротора гироскопа до скоростей тысячи оборотов в минуту. Только в конце XIX века было предложено использовать для разгона и поддержания вращения ротора гироскопа электрический мотор, тем самым обеспечив возможность получения больших значений кинетического момента гироскопа H и его постоянства в течение неограниченного промежутка времени.
Впервые уравновешенный гироскоп нашел практическое применение в устройстве для стабилизации курса торпеды, изобретенном в 80-х годах XIX века инженером Обри. Гироскоп Обри устанавливался в кардановом подвесе так, чтобы его ось вращения была параллельна продольной оси торпеды. Ротор гироскопа приводился во вращение за несколько секунд до выстрела, когда ось торпеды была уже направлена на цель. При движении торпеды гироскоп продолжал сохранять исходное направление и при возникновении отклонений торпеды поворачивал ее рули таким образом, чтобы обеспечить неизменность курса. Аналогичные устройства в различных вариантах исполнения и под разными наименованиями позднее стали применять на самолетах для указания курса (гироскопы направления, гирополукомпасы) и для управления движением ракет. Наземные маркшейдерские гирокомпасы применяют при выяснении формы буровых скважин (инклинометры), в качестве компасов сухопутной артиллерии при стабилизации стволов танковых орудий и в орудийных прицелах зенитной артиллерии. При первом практическом применении прицелов типа («Сперри-14») во время Второй мировой войны зенитные пушки сбили 32 самолета противника в одном только бою. В стабилизацию вертикального положения велосипеда основной вклад вносят гироскопические моменты колес, гироскопический эффект у винтовых самолетов и вертолетов оказывает существенное влияние на их угловое движение.