2. Частнонаучные методы познания

Помимо общенаучных методов, в науке используется в ходе научного познания также большое количество частнонаучных методов. Существует три разных вида и класса частнонаучных методов: отраслевые, уровневые и дисциплинарные методы научного познания.

2.1. Отраслевые методы

Отраслевые методы научного познания – это методы, которые характерны только для какой-либо одной из областей (отраслей) научного знания: математика, естествознание, социально-гуманитарные науки, технонауки. Например, для математики такими методами являются аксиоматический метод, метод формализации, метод математической индукции, метод математической интерпретации, метод неявных определений основных понятий, конструктивно-генетический метод, метод итерации. Рассмотрим их более подробно.

Метод математической индукции – способ доказательства в математике ее общих утверждений, имеющий следующий вид. Если установлено (или принято по определению), что первый член некоторой математической последовательности (возможно, бесконечной) имеет свойство Р и если доказано, что если n-ый член этой последовательности имеет свойство Р, то и n+1-й также будет иметь это свойство, то, следовательно, все члены данной (бесконечной) последовательности обладают свойством Р. Математическая индукция является основным способом доказательства в интуиционистской и конструктивной математике.

Метод итерации – способ построения производных объектов некоторой математической теории путем последовательного (повторного) применения некоторой элементарной операции сначала к ее исходным объектам, а затем и к полученным из них производным объектам. В результате происходит порождение всего множества возможных объектов теории. Метод итерации применяется в основном в арифметике, логике и теории множеств. Этим методом, например, создаются все числа натурального ряда как множество всех объектов такой теории, как арифметика натуральных чисел. Исходным идеальным объектом арифметики натуральных чисел является число 1 или 0 – это дело конвенции. А каждое другое ее число (производный объект) создается путем прибавления единицы к предшествующему ему числу. Путем последовательного повторения (итерации) этой простейшей операции прибавления единицы к любому натуральному числу, начиная с исходного числа, создается весь натуральный ряд чисел как последовательно возрастающая их последовательность. Очевидно, что потенциально эта последовательность является бесконечной (хотя реально – всегда конечной), поскольку к любому сколь угодно большому натуральному числу в принципе (логически) всегда может быть прибавлена еще одна единица. Это означает, что потенциально число членов натурального ряда бесконечно и что в принципе не может существовать самого большого натурального числа.

Формализация – метод построения формальных (синтаксических) моделей содержательных фрагментов математического знания, например, ее содержательных теорий. Формализация включает в себя выполнение познавательных операций: 1) построение некоторого формального языка – языка символов (синтаксического языка) для конкретной математической теории; 2) обозначение с помощью введенных символов формального языка всех понятий и логических операций содержательной математической теории; 3) перевод (отображение) содержательного языка данной теории на язык символов формального языка и превращение тем самым данной теории в чисто знаковую конструкцию, построенную по определенным законам введенного формального языка. Главный смысл формализации математического знания заключается в максимально полном отображении всех его истинных высказываний в некоторое подмножество формул формального языка. Метод формализации применяется в основном для логического обоснования математических теорий, осуществления доказательства их внутренней логической непротиворечивости, полноты их системы аксиом, эффективности существующих в содержательной теории доказательств. У формализации как метода имеются определенные границы. Как показал К. Гедель, даже для арифметики натуральных чисел, самой простой из математических теорий, принципиально невозможно осуществить ее абсолютно полную формализацию.