Фитч и Марголиаш в 1967 году фактически предложили свой алгоритм не как самоцель, а скорее, как эвристический метод получения дерева, которое, вероятно, будет иметь определенное свойство оптимальности, о чем еще поговорим в ходе решения связанных с этим задач. Рассматриваем его здесь, как и UPGMA, в качестве шага на пути к изложению алгоритма из следующего раздела. Знакомство с UPGMA и FM-алгоритмом поможет понять более сложный метод.

Конечно, и UPGMA, и FM-алгоритм лучше выполнять компьютерными программами, чем вручную. Тем не менее, несколько ручных расчетов необходимо выполнить, чтобы полностью понять, как функционируют методы и какие предположения в них входят.

Хотя алгоритм Фитча-Марголиаша позволил получить неравные длины ветвей в деревьях, за это заплатили высокую цену – построенные деревья оказываются некорневыми. Однако, поскольку поиск корня часто желателен, возникает необходимость обойти этот недостаток.

При применении любого метода филогенетического дерева, который дает некорневое дерево, может быть включен дополнительный таксон. Этот дополнительный таксон выбран так, чтобы было известно, что он более отдаленно связан с каждым из представляющих интерес таксонов, чем они связаны друг с другом, и присоединяется как внешняя группа. Например, если пытаемся связать разные виды уток друг с другом, то можем включить другой тип птиц в качестве внешней группы. Как только дерево без корней построено, находим корень такой, чтобы ребро из внешней группы соединялось с остальной частью дерева. Информация о том, что внешняя группа должна была отделена от других таксонов до того, как они отделились друг от друга, помогает определить место корня на дереве общего предка.

Задачи для самостоятельного решения:

5.2.1. Для дерева на рисунке 5.8, построенного методом UPGMA, вычислите таблицу расстояний между таксонами вдоль дерева. Как это соотносится с исходной таблицей данных расстояний?

5.2.2. Предположим, что четыре последовательности , ,  и  ДНК разделены филогенетическими расстояниями, как показано в таблице 5.9. Создайте корневое дерево, показывающее отношения между , ,  и  с помощью UPGMA.

Таблица 5.9.  Данные о расстоянии для задач 5.2.2 и 5.2.5











           1.2         .9           1.7



                         1.1         1.9



                                        1.6

5.2.3. Выполните UPGMA для данных расстояния в таблице 5.4, которые были использованы в примере FM-алгоритма. Производит ли UPGMA топологически то же дерево, что и алгоритм FM? А метрически?

5.2.4. FM-алгоритм использует тот факт, что данные о расстоянии, относящиеся к трем терминальным таксонам, могут быть точно подогнаны по одному некорневому дереву, относящемуся к ним.

а. Выведите 3-точечных формулы, приведенные в разделе.

б. Если расстояния равны

,
 и
, то каковы длины
,
 и
?

5.2.5. Используйте FM- алгоритм для построения некорневого дерева на данных в таблице 5.9, которая также использовалась в задаче 5.2.2. Насколько отличается получившийся результат?

5.2.6. Предположим, что три терминальных таксона связаны некорневым метрическим деревом.

а. Если три длины ребер равны 0.1, 0.2 и 0.3, объясните, почему гипотеза молекулярных часов должна быть неверной, независимо от того, где находится корень.

б. Если длины трех ребер равны 0.1, 0.1 и 0.2, объясните, почему гипотеза о молекулярных часах может быть верной. В случае, когда гипотеза оказывается верна, где должен находиться корень?

в. Если три длины ребер равны 0.1, 0.2 и 0.2, объясните, почему гипотеза молекулярных часов должна быть неверной, независимо от того, где находится корень.