Таблица 5.5. Расстояния между группами; FM-алгоритм, шаг 1a
.31 .93
.863
Имея только три таксона в этой таблице, можем точно подогнать данные к дереву, используя 3-точечные формулы, чтобы получить рисунок 5.10. Ключевым моментом здесь является то, что 3-точечные формулы, в отличие от UPGMA, могут давать неравные расстояния таксонов от общего предка.
Рисунок 5.10. FM-алгоритм; шаг 1.
Теперь оставляем только ребра, заканчивающиеся в
Таблица 5.6. Расстояния между группами; FM-алгоритм, шаг 1b
1.005 .72 .965
.61 .42
.37
Снова ищем ближайшую пару (теперь это
Таблица 5.7. Расстояния между группами; FM-алгоритм, шаг 2a
.683 .783
.37
Рисунок 5.11. FM-алгоритм; шаг 2.
Оставляем ребра инцидентные с
Таблица 5.8. Расстояния между группами; FM-алгоритм, шаг 2b
1.005 .8425
.515
На этом этапе можем получить итоговое дерево по таблице путем окончательного применения 3-точечных формул, что дает рисунок 5.12.
Рисунок 5.12. FM-алгоритм; шаг 3.
Теперь заменяем группы на этой последней диаграмме шаблонами ветвления, которые уже нашли ранее. Это дает рисунок 5.13.
Последним шагом является заполнение оставшихся длин
Рисунок 5.13. FM-алгоритм; завершение.
Обратите внимание, что одно ребро оказалось отрицательной длины. Поскольку этого не может быть, многие на практике предпочли бы просто переопределить длину в 0. Однако, если это произойдет, то должны будем по крайней мере проверить, что отрицательная длина была близка к 0, иначе придётся беспокоиться о качестве используемых данных.
Хотя на первый взгляд это может показаться странным, но как алгоритм Фитча-Марголиаша, так и UPGMA будут создавать точно такое же топологическое дерево при применении к набору данных. Причина этого заключается в следующем: при принятии решения о том, к каким таксонам или группам присоединиться на каждом шаге, оба метода учитывают точно такую же свернутую таблицу данных и оба выбирают пару, соответствующую наименьшей записи в таблице. Отличаться будут только метрические характеристики результирующих деревьев. Это немного подрывает надежду на то, что FM-алгоритм лучше, чем UPGMA. Хотя это может привести к лучшему метрическому дереву, но топологически оно никогда не отличается.
Фитч и Марголиаш в 1967 году фактически предложили свой алгоритм не как самоцель, а скорее, как эвристический метод получения дерева, которое, вероятно, будет иметь определенное свойство оптимальности, о чем еще поговорим в ходе решения связанных с этим задач. Рассматриваем его здесь, как и UPGMA, в качестве шага на пути к изложению алгоритма из следующего раздела. Знакомство с UPGMA и FM-алгоритмом поможет понять более сложный метод.