В 1999–2005 годах, когда Лэнс Армстронг выигрывал Тур де Франс беспрецедентные семь лет подряд, ходили упорные слухи, что он применяет допинг. Все подозревали, но ничего не было доказано. К 2008 году благодаря постоянным исследованиям доказательства начали появляться. Одного из лучших американских велосипедистов, признавшегося в нарушении правил, Кейла Леогранда, спросили, не считает ли он, что Армстронг использует допинг. Леогранд нисколько в этом не сомневался: «Он участвует в этих варварских велогонках в Европе. Если бы вы были велосипедистом этого уровня, что бы вы сделали?»[75]
Наконец, в 2013 году Армстронг признался, что использовал допинг, – все возможные варианты. ЭПО? «Да». Кровяной допинг? «Да». Тестостерон? «Да». Отвечая на вопрос, мог ли он выиграть Тур де Франс, не прибегая к этим мерам, Армстронг сказал: «Нет». Если бы он не использовал все имеющиеся средства, то при такой конкуренции у него не было бы возможности выиграть гонку. Печально, но Армстронг, вероятно, прав, хотя допинг обострил проблему и лишил других велосипедистов возможности ездить честно.[76]
Конечно, вышесказанное не оправдывает нелегальное использование наркотиков. Многие велосипедисты отказались от допинга, и в результате пострадали их карьеры. Мы должны осудить велосипедистов, употреблявших наркотики, и чиновников, не спешивших настаивать на жестком контроле. В этом смысле обнадеживающий шаг вперед – появление биологического паспорта, в котором зафиксированы исходные показатели каждого спортсмена, что позволяет легко выявить отклонение ключевых маркеров.
Но я привел этот пример для того, чтобы показать другое: даже небольшое повышение абсолютной производительности может привести к значительным отличиям в относительной производительности, а именно к победе или поражению.
Абсолютное улучшение и относительный успех
Чтобы проиллюстрировать, как повышение производительности (абсолютное) может повлиять на успех (относительный), давайте вернемся к примеру из главы 2: в нем игроков просили забить мяч в лунку (опустим проектор и круги, создававшие иллюзию увеличения и уменьшения лунки).
Давайте предположим, что группа начинающих игроков в гольф при ударе с двухметрового расстояния имеет 30-процентный шанс попадания. Если мы попросим каждого из них сделать по 10 ударов (и предположим, что каждый удар независимый, то есть один удар не улучшает качество других), то получим распределение, представленное на рис. 4.1. Очень небольшое количество игроков (2,8 %) промахнется все десять раз, 12 % попадет в одну лунку, 23,3 % в две и 26 % (самый распространенный результат) в три. От этой точки кривая распределения начинает снижаться: в четыре лунки попадет 20 % игроков, 10,3 % попадет в пять и 3,7 % в шесть лунок. В семь лунок из десяти попадет менее 1 %, и хотя дальнейшее улучшение возможно, оно все менее и менее вероятно.
Рис. 4.1. Группа новичков, 30-процентный уровень попаданий
Теперь предположим, что мы собрали другую группу и провели для нее занятия. Мы обучили участников делать плавный удар с хорошим завершением. Мы научили их сосредоточивать ум и использовать преимущества позитивного мышления. Давайте предположим, что члены обученной группы попадают в 40 % случаев – значительное улучшение по сравнению с 30 % у новичков, но все еще далекое от 54,8 % – у профессиональных гольфистов, упомянутых в главе 2. Если все члены группы сделают по 10 ударов, то получится распределение как на рис. 4.2. Теперь почти никто не промажет все десять раз: 4 % попадут только в одну лунку, 12,1 % в две, 21,5 % в три, 25,1 % в четыре и т. д.