Каждая компонента формулы квантовой матрицы связей играет определенную роль и оказывает влияние на итоговую матрицу связей:


1. Величина связи: Величина связи между объектами определяет силу и характер взаимодействия между ними. Она является мерой интенсивности связи и может быть положительной, отрицательной или нулевой. Величина связи влияет на значения элементов матрицы связей, где более сильная связь будет приводить к более высоким значениям в соответствующих элементах матрицы.


2. Функция зависимости: Функция зависимости определяет, как величина связи между объектами зависит от расстояния между ними. Она описывает изменение связи с увеличением или уменьшением расстояния и может иметь различную форму в зависимости от конкретной системы или задачи. Функция зависимости влияет на значения элементов матрицы связей, где более дальние объекты будут иметь меньшую связь и ниже значения в соответствующих элементах матрицы.


3. Расстояние: Расстояние между объектами определяет их геометрическое расположение и влияет на связь между ними. Как понятно из функции зависимости, связь снижается с увеличением расстояния. Значение расстояния влияет на значения элементов матрицы связей, где более близкие объекты будут иметь более сильную связь и более высокие значения в соответствующих элементах матрицы.


4. Матрица A: Матрица A представляет собой матрицу, в которой каждый элемент отражает взаимодействие между соответствующими парами объектов. Значения элементов матрицы связей определяются величиной связи, функцией зависимости и расстоянием, которые формируют их значения. В итоге, матрица A представляет собой математическое представление связей между всеми парами объектов в квантовом пространстве.


Каждая компонента формулы вносит свой вклад в итоговую матрицу связей, определяя интенсивность, зависимость, и геометрическое расположение связей между объектами. В результате, формула квантовой матрицы связей позволяет количественно оценить и представить связи между объектами в квантовом пространстве.

Примеры расчетов для каждой компоненты на конкретных значениях переменных

Рассмотрим примеры расчетов для каждой компоненты на конкретных значениях переменных в квантовой матрице связей:


1. Величина связи (𝑠𝑖𝑗):


Предположим, у нас есть два объекта i и j в квантовом пространстве, и их величина связи задана следующим образом: 𝑠𝑖𝑗 = 0.5. Это может указывать на среднюю силу связи между объектами.


Используя величину связи 𝑠𝑖𝑗 = 0.5, мы можем сказать, что связь между объектами i и j имеет среднюю силу. Значение 0.5 может быть нормализовано от 0 до 1, где более близкое к 1 значение будет указывать на более сильную связь, а близкое к 0 значение – на слабую связь или отсутствие связи. В данном случае, значение 0.5 указывает на умеренную связь между объектами i и j.


2. Функция зависимости (𝜑 (𝑟𝑖𝑗)):


Предположим, мы используем функцию зависимости 𝜑 (𝑟) = 𝑒^ (—𝑟), где 𝑟 – расстояние между объектами. Если расстояние между объектами равно 2, то функция зависимости будет 𝜑 (2) = 𝑒^ (—2) ≈ 0.1353. Это показывает, что связь между объектами уменьшается с увеличением расстояния и составляет около 13.53% от исходной

величины связи.


Используя функцию зависимости 𝜑 (𝑟) = 𝑒^ (—𝑟), где 𝑟 – расстояние между объектами, предположим, что расстояние между объектами i и j равно 2.


Подставляя это значение в функцию зависимости, получаем:


𝜑 (2) = 𝑒^ (—2) ≈ 0.1353.


Это означает, что связь между объектами i и j уменьшается с увеличением расстояния. В данном случае, при расстоянии 2 единиц, значение функции зависимости составляет примерно 0.1353. Это указывает на уменьшение связи до примерно 13.53% от начальной величины связи между объектами. Функция зависимости показывает, как расстояние между объектами влияет на силу связи между ними.