. Области синусоидальной функции, куда могут попасть положительно заряженные частицы, остаются незаполненными электронами (в них возможно зафиксировать позитроны). В центральную потенциальную яму атома (куба) помещается положительно заряженное ядро. Звездой обозначается потенциальная яма, полученная в результате совмещения крестика и треугольника. Подобное совмещение обеспечивает стабильность кристаллической структуры или молекулы при воздействии на квантовую систему извне. Большинство химических соединений, имеющих под собой теоретическое обоснование, возможно получить на практике при условии, что между атомами, входящими в состав той или иной кристаллической структуры или молекулы, будут присутствовать химические связи. На рисунке 3.1 продемонстрированы 2 соединённых между собой атома, расположенных отдельно друг от друга на изображении слева и совмещённых в общую структуру – справа.
Рисунок 3.1 Соединение 2-х атомов в их вершинах.
Следующее возможное соединение, полученное из частиц, которые изображаются на рисунке 3.2, располагается вдоль их сторон. Треугольники, входящие в состав первого атома, находятся на одной прямой, вследствие чего в них легко попадают крестики (потенциальные ямы с электронами) другого химического элемента. В результате образуется гораздо более прочное соединение по сравнению с взаимодействием, показанным на рисунке 3.1.
Рисунок 3.2 Соединение атомов вдоль одной плоскости (грани куба) в двух точках.
Наиболее сильное соединение возникает при совмещении атомов вдоль их граней. На рисунке 3.3 продемонстрирован пример такого соединения, где потенциальные ямы с крестиками объединяются с потенциальными ямами, помеченными треугольниками. Заметим, что на рисунке слева, расположенном на изображении 3.3, в центре граней атомов находятся треугольники. Соединение 2-х химических элементов возможно получить только в том случае, когда пустые потенциальные ямы будут заполняться электронами. Таким образом, в рассматриваемом примере следует говорить о существовании дырочной проводимости в веществе.
В процессе моделирования химических соединений необходимо учитывать незаполненные подуровни, потенциальные ямы которых не определяют химическую связь. В расчёте химического взаимодействия атомов будет участвовать некоторое количество потенциальных ям, а не электронов, поскольку отрицательно заряженные частицы с предыдущих уровней занимают в три раза больше потенциальных ям, чем электроны на заданном энергетическом уровне.
Рисунок 3.3 Соединение 2-х атомов вдоль одной плоскости (грани куба) в четырёх точках.
Ещё одним важным видом взаимодействия атомов, входящих в состав той или иной кристаллической решётки или молекулы, является такое расположение частиц, когда существует возможность составить стационарное решение уравнения Шрёдингера, полученное для химического соединения, которое не содержит в своей структуре звёздочек (см. рисунок 3.4). Для слоистых материалов, например графита, существует небольшое притяжение между двумерными кристаллическими структурами графена. В процессе моделирования не остаётся свободных треугольников в двумерной структуре графена, однако, исходя из особенностей решения уравнения Шрёдингера, полная энергия квантовой системы на практике примет минимальное значение, что обеспечит стабильность атомов, входящих в состав трёхмерного химического соединения. Расположение электронов в потенциальных ямах будет сохраняться до тех пор, пока не изменятся значения полупериодов пространства синусоидальной функции R>x/m>x, R>y/m>y, R