Это также означает, что необходим определенный запас точности настройки, как минимум между двумя ППР и должна рассчитываться зона безопасного смещения математического ожидания вырабатываемой совокупности и роста ее дисперсии. В этом случае в «алмазной диаграмме» программы FIELDCARE можно предусмотреть 2 основные части поля рассеяния – большую часть, равную вероятностной сумме случайных погрешностей и меньшую, зону безопасного смещения математического ожидания и роста ее дисперсии, или зона запаса точности. Они, как понятно, должны быть меньше поля допуска. В анализе, приводимом специалистами по точности (ИПМАШ, Санкт-Петербург), показывается, что при применении, например, унифицированного метода, чем точнее выполняется обработка (точнее работает контур регулирования), тем создается большая возможность увеличения допусков. Этот принцип реализуется только при автоматическом непрерывном регулировании точности. Как уже показывалось выше, автоматический перерасчет клапанов он-лайн и встройка тревожных сигналов в системы автоматизации, может стать первым приемом повышения эффективности качества регулирования.

Если при моделировании используются различные гидравлические или электрофизические аналогии, то появляется возможность определить влияние дополнительных малых параметров на динамику системы. При разработке алгоритмов, они также могут быть включены в систему автоматизации процесса. Такие модели могут быть наиболее полезны при анализе точности сложных технологических схем, состоящих из большого числа узлов, соединенных последовательно или содержащих несколько разветвленных схем из таких последовательных цепочек. Требуется расчет точности контура регулирования каждого элемента и точности взаимного влияния этих контуров, для того, чтобы гарантировать функциональную точность процесса. Кроме того, модели должны учитывать изменение погрешностей во время эксплуатации. Ряд таких работ проводится в ВШТЭ СПБГУПТиД (бывшее ГТУРП), Санкт-Петербург. В результате моделирования одним из первых результатов может быть предсказание того, достигнет ли контур требуемой точности, будут ли сбои в определенный период, необходимо ли перепроектировать сам контур и т.п.


ПРИМЕНЕНИЕ ТЕОРИИ ВКЛАДОВ ДЛЯ АНАЛИЗА И СИНТЕЗА ТОЧНОСТИ

Вклад – эта мера влияния данного фактора на тот или иной показатель точности выходной характеристики. По-видимому, этот метод наиболее характерен для расчета погрешностей процессов технологических схем, как уже было продемонстрировано. При этом вклады могут быть следующими

1. абсолютный вклад фактора, включая и возмущающие, в математическое ожидание или среднее значение,

2. относительный вклад того же фактора,

3. относительный вклад свободного члена исходной модели (погрешности линеаризации, моделирования, полноты учета входных параметров),

4. относительный вклад дисперсии фактора в дисперсию выходной характеристики,

5. относительный вклад поля рассеяния фактора в поле рассеяния выходной характеристики,

6. относительный вклад совместного влияния 2-х дисперсий в дисперсию выходной характеристики, поля рассеяния,

7. относительный вклад отклонения от среднего значения факторов в отклонение от среднего значения выходной характеристики.

Методология рассмотрения точности по методу вкладов позволяет решать следующие задачи:

– ранжирование факторов по степени их влияния на выходные характеристики,

– оценка вклада в линеаризованную область, что позволяет анализировать роль неопознанных, неучтенных факторов и возмущений, а также погрешностей моделирования,

– оценка технических требований к конструкции и процессам, а также их уточнение,