Пример. Пусть контролируемым параметром будет рН воды. После отладки процесса берется выборка данных химанализа воды и оцениваются результаты измерения рН каждого измерения. Получаем выборку. Спустя заданное время проводим эту процедуру 2-й раз. Результаты измерений смешиваются, и каждому значению присваивается ранг. Вычисляются суммы рангов для каждой из выборок и определяются значения критерия Уилкоксона. Они сравниваются со значениями для риска 1-го рода. Выявляется разница. Если она существенна, что это означает, что необходимо вмешаться в процесс, т.к. что-то в распределении рН изменилось, хотя отклонения, выходящие за пределы допуска, еще не появились. Произведя еще вычисления, можно установить, что именно изменилось, в какой из характеристик процесса нарастает опасная тенденция. Ими может быть уровень настройки, о чем можно судить по изменению среднего арифметического, разброс значений, т.е. точность отслеживания рН, о чем можно судить по изменению дисперсии.
Для регулирующих клапанов особенно важно, чтобы процесс находился в наиболее эффективной линейной части регулирования. Его можно назвать «центром процесса» или распределения и он соответствует традиционно задаваемому диапазону регулирования 50-70%. Регулирование на этом участке будет наиболее свободно от погрешностей и будет ухудшаться с приближением к выходу за его пределы. Это также означает, что в случае ухода от центра процесса (распределения) и приближением к его концам будет появляться дополнительный разброс значений. И это также означает, что необходимо поддерживать настройку клапана и удержание диапазона регулирования в области центра процесса. В случае выхода клапана из зоны эффективного регулирования с максимальной линеаризацией, и работой в диапазоне ниже 40% или более 70%, отклонения в регулируемых параметрах могут иметь критические значения. Расчеты погрешности по левой и правой границе диапазона регулирования дадут точные значения общей погрешности и помогут более точно сформировать требования к точности вблизи этих границ.
Учитывая частые изменения нагрузки, использование программы NELPROF в режиме «он-лайн» поможет производству и технологам вовремя увидеть проблемы нарастания погрешности в связи с выходом за нижнюю или верхнюю границу пропускной характеристики. Так, по данным аудита одного из энергетических хозяйств ЦБК, свыше 50% регулирующих клапанов работало при угле открытия ниже 40%, что было главной проблемой накопления ошибок при регулировании. В случае если бы в системе автоматизации была бы установлена программа NELPROF, технологи и специалисты по автоматизации смогли бы выявить проблему значительно раньше и задать ограничения по процессу или снижению производительности.
Таким образом, уравнения погрешностей или их совокупностей, если затрагиваются несколько выходных характеристик, могут служить расчетным аппаратом при решении задач отстройки системы от нежелательных уровней выходных характеристик, либо задачи доводки последних до необходимой величины.
При моделировании точности необходимо учесть, что особенное влияние на поле рассеяния параметров имеет динамика протекания технологического процесса. Чем выше скорость, производительность, чем меньше устройств сглаживания, резервирования или транспортных звеньев, также способных сглаживать процессы, тем выше неустойчивость регулирования и колебательность процесса. При этом следует принять во внимание, что смещается как математическое ожидание характеристики под действием систематических факторов (износ, разбалтывание соединений, люфты в клапане, другие возмущающие факторы), так и случайные факторы при поднастройке контура регулирования и самого клапана. Растет дисперсия вследствие действия систематических факторов, например, динамических отклонений и, соответственно, динамической расстройки контура, так и случайных факторов.