При сопоставлении расчетных констант по большой серии гаплогрупп такие искажения должны быть заметны, проанализированы, и если причина выяснена и действительно показано, что это искажения, то эти выпадающие величины должны быть приняты во внимание. Таким образом видно, что это кропотливая и большая работа. Дилетанты или прочие любители обычно выхватывают одну серию гаплотипов, делят одно на другое, без всяких перекрестных проверок и размышлений, и вуаля, ответ готов. Он часто такой – «расчеты по мутациям смысла не имеют». Пример такой дилетантской (в данном отношении) статьи Busby et al (2011)[60], сюда же относятся неквалифицированные рассуждения Dienekes Pontikos[61], и прочих. Они основывались именно на выхватывании отдельных величин, которые оказались искаженными, и отсюда делались «глобальные» негативные выводы. По аналогии, можно бросить монету три раза, и на основании полученного результата объявить теорию вероятности «псевдонаукой».

Проще с протяженными гаплотипами, в первую очередь 67- и 111-маркерными, в которых искажения в индивидуальных маркерах, которые (искажения) также имеют статистический характер, уравновешиваются, компенсируются на множестве маркеров, и в итоге дают взаимно согласованные данные. Примеры (показаны датировки протяженных серий 111-маркерных гаплотипов, первая колонка – 67-маркерные гаплотипы, вторая – 111-маркерные), датировки без округления:




Часто спрашивают, а сохраняются ли константы скоростей мутаций в других гаплогруппах и субкладах? Ответ – естественно, сохраняются, так как откуда, например, маркер DYS393 «знает», какая там снип-мутация имеется на другом конце Y-хромосомы, и которая определяет носителя Y-хромосомы в определенный субклад? Маркер есть маркер, это обычно три- или тетра-нуклеотид, повторяющийся определенное количество раз в Y-хромосоме. Раз в несколько тысяч лет он удлиняется или укорачивается на одно (обычно) звено, и что ему до удаленной снип-мутации? Но люди интересуются, обычно не задумываясь о таких деталях, им представляется, что гаплогруппа – это что-то большое и материальное, вляющее на скорости мутации во всей Y-хромосоме каким-то чудодейственным образом.

Еще пример – субклад R1b-M222, в котором 818 аллелей маркера DYS393 распределяются следующим образом:

12 – 5

13 – 791

14 – 22


Число мутаций (от базового значения маркера) равно 27, что дает 27/818/0.00059 = 56 → 57 условных поколений, или 1425±310 лет до общего предка. По данным расчета по снипам субклад R1b-M222 образовался 4300 лет назад (http://www.yfull. com/tree/R1b/), но популяция прошла бутылочное горлышко, и общий предок современных носителей R1b-M222 жил на три тысячи лет позже. Такое бывало довольно часто.

Еще один непростой пример – гаплогруппа J2. Пример непростой, потому что гаплогруппа древняя, и состоит из многих обрывков ДНК-генеалогических линий, которые усложняют расчеты. Посмотрим, насколько однородный там набор из 587 аллелей маркера DYS393, которые распределяются следующим образом:

9 – 1

10 – 0

11 – 5

12 – 510

13 – 65

14 – 5

15 – 1


Всего – 86 одношаговых мутаций. Мы видим опять несимметричное распределение аллелей, идущих «на понижение» и «на повышение». Но если это пока отложить на последующее рассмотрение, то 86 мутаций для 587 аллелей – это при равном «возрасте» общего предка соответствует 508 мутациям для 3466 аллелям (в субкладе R1b-L21), а там – только 232 мутации, то есть в 2.19 раз меньше. В идеальном случае (без осложняющих факторов) это соответствует датировке общего предка для выборки J2 примерно 3810x2.19 = 8300 лет. Определение датировки по 417 гаплотипам (другая выборка) гаплогруппы J2 дало 8993±903 и 9914±993 лет до общего предка (по 67- и 111-маркерным гаплотипам). Разница заметная (8 % и 19 %, соответственно), но район датировок тот же, тем более с учетом, что мы сравниваем датировку по одному маркеру с датировками по 67 и 111 маркерам.