При повышении температуры происходит уменьшение интенсивности сохранения прочности твердого тела при измельчении молекулы.

Для твердых тел может проявляться эффект пластичности, что может быть связано не с понижением сопротивления пластическому течению, возникающему при увеличении прочности, и возможно при растворении (частично) твердых тел, содержащих дефекты поверхностного слоя.

Диспергирование твердых тел является одним из наиболее важных процессов современной техники. Также процесс диспергирования является одним их крупных масштабных явлений природы. Затраты энергии при протекании механического диспергирования твердых тел могут определяться механическими свойствами твердой фазы и требуемой дисперсностью продукта. Хорошо измельчаться могут только хрупкие материалы, а для пластических твердых веществ процесс диспергирования идет с большим трудом. Так, высокодисперсные золи различных металлов и некоторых видов сплавов в различных средах могут быть получены методом распыления, который является промежуточным способом по своей физико-химической природе между диспергированием и конденсацией. Этот метод позволяет получить золи щелочных металлов в органических растворителях, что невозможно в методе диспергирования, за счет сильного измельчения твердых тел, и при невозможности использования высоких разрядов. Важную роль в процессах диспергирования играет введение различных по природе и механизму действия поверхностно-активных веществ. Введение поверхностно-активных веществ может облегчать измельчение, но может препятствовать сцеплению частиц, образующихся при измельчении.

29. Условие самопроизвольного распространения трещин. Влияние ПАВ на механические свойства твердых тел

Часто разрушению твердых тел предшествуют трещины. Причем если размеры трещины больше критического значения, то это приводит к появлению макроскопической трещины и быстрому разрушению тела. Трещины, имеющие размеры меньше критических, могут уменьшать свои размеры, как говорят, «лечиться». Достаточный рост трещин разрушения твердых тел определяется кинетикой поступления жидкой фазы в трещину.

Поверхностно-активные вещества в равной степени могут как предотвращать трещины, так и увеличивать их. Впервые проблемой структурно-механического барьера занялся А. П. Ребиндер.

Он предположил, что этот барьер является неким сильным фактором стабилизации, который, в свою очередь, связан с образованием на границе раздела фаз адсорбционных слоев как низко– так и высокомолекулярных слоев поверхностно-активных веществ. Структура таких разных слоев способна обеспечить достаточно высокую устойчивость прослоек дисперсионной среды между частицами дисперсной фазы.

Структурно-механический барьер может возникать только при адсорбции молекул поверхностно-активных веществ. Такие молекулы не обязательно могут быть сильно активными на поверхности, но могут образовывать гелеобразный слой на межфазной границе. Такой слой может возникать в растворах ряда веществ при большой их концентрации (в белках, глюкозе). Эти вещества называют защитными коллоидами, т. е. высокомолекулярными соединениями, которые имеют области меньшей и большей гидрофильности. А. П. Ребиндер выделяет несколько условий, которые отвечают высокой эффективности структурно-механического барьера.

1. Наличие повышенной вязкости и достаточной механической прочности адсорбируемых слоев стабилизаторов. Для таких веществ характерна способность сопротивляться деформации и сильному разрушению в сочетании с достаточной подвижностью, которая может обеспечивать «залечивание» случайно возникающих дефектов слоя. Для систем, которые образованы твердыми частицами, условием высокой стабилизации может быть высокая прочность.