39. Прежде всего заметим, что А не может быть рыцарем, потому что рыцарь не назвал бы себя обычным человеком. Следовательно, А – либо лжец, либо обычный человек. Тогда истинно высказывание островитянина В. Значит, В – либо рыцарь, либо обычный человек. Но В не может быть обычным человеком (так как А – обычный человек), поэтому В – рыцарь, а С – лжец. Но лжец не может сказать о себе, что он не обычный человек (так как любой лжец – не обычный человек), и мы приходим к противоречию. Итак, А не может быть обычным человеком. Следовательно, А – лжец. Это означает, что высказывание островитянина В ложно, в силу чего В должен быть обычным человеком (лжецом он быть не может, так как лжец – островитянин А). Итак, А – лжец, а В – обычный человек. Отсюда мы заключаем, что С – рыцарь.


40. Эта задача обладает интересной особенностью. Условия ее не позволяют установить, кто из двух островитян говорит правду, не будучи рыцарем: А или В. Мы можем доказать более слабое утверждение: по крайней мере один из двух островитян А и В говорит правду, не будучи рыцарем.

Островитянин А либо говорит правду, либо не говорит правду. Докажем два утверждения: 1) если А говорит правду, то он говорит правду, не будучи рыцарем; 2) если А лжет, то В говорит правду, не будучи рыцарем.

1) Предположим, что А говорит правду. Тогда В – рыцарь и, следовательно, говорит правду. Значит, А – не рыцарь. Таким образом, если А говорит правду, то А – лицо, говорящее правду, не будучи рыцарем.

2) Предположим, что А не говорит правду. Тогда В – не рыцарь. Но В должен говорить правду, так как А не может быть рыцарем (ведь А не говорит правду). Следовательно, в этом случае В говорит правду, не будучи рыцарем.


41. Докажем, что если В говорит правду, не будучи рыцарем, и если В не говорит правду, то А лжет, не будучи лжецом.

1) Предположим, что В говорит правду. Тогда А – лжец и, следовательно, заведомо не говорит правду. Отсюда мы заключаем, что В – не рыцарь. Таким образом, в этом случае В говорит правду, не будучи рыцарем.

2) Предположим, что В не говорит правду. Тогда А не лжет. Но А заведомо лжет, когда говорит о В, так как В не может быть рыцарем, если он не говорит правду. Таким образом, в этом случае А лжет, не будучи лжецом.


42. Прежде всего заметим, что А не может быть рыцарем, так как если бы А был рыцарем, то его высказывание было бы ложным (рыцарь как особа высшего ранга не может быть по рангу ниже В). Предположим, что А – лжец. Тогда его высказывание ложно. Следовательно, А по рангу не может быть ниже, чем В. Значит, В также должен быть лжецом (так как если бы В не был лжецом, то А был бы особой более высокого ранга, чем В). Но это невозможно, так как высказывание В противоположно высказыванию А, а два противоположных высказывания не могут быть истинными одновременно. Следовательно, предположение, что А – лжец, приводит к противоречию. Значит, А не лжец, но тогда А должен быть обычным человеком.

А что можно сказать о В? Если бы он был рыцарем, то А (будучи обычным человеком) был бы особой более низкого ранга, чем В. Тогда высказывание А было бы истинным, из чего следовало бы, что высказывание В ложно. Таким образом, рыцарь высказал бы ложное утверждение, что невозможно. Значит, В не рыцарь. Предположим, что В был бы лжецом. Тогда высказывание А было бы ложным, из чего следовало бы, что высказывание В истинно. Таким образом, лжец высказал бы истинное утверждение, что невозможно. Следовательно, В не может быть не только рыцарем, но и лжецом. Значит, В – обычный человек.

Итак, А и В – обычные люди. Высказывание А ложно, высказывание В истинно. Тем самым задача полностью решена.