Дедукция метаразума – это логический вывод от общего к частному, на основании знания общих трансцендентальных (содержательных) законов и правил по Канту, который обуславливает истинность суждения метаразума об априорных теоретических знаниях метаразума.

Индукция метаразума – это логический вывод от частного к общему, установление общих законов и правил на основании изучения трансцендентальных (содержательных) отдельных фактов и явлений по Канту на основе опыта, которые обуславливают истинность суждения метаразума об апостериорных теоретических знаниях метаразума.

Аналогия метаразума – это логический вывод от частного к частному на основе некоторых элементах сходства.

Мышление и познание метаразума, в основном, определено и представлено мной как процесс решения задач на графах (машинных трансцендентальных схемах по Канту).

Бытует утверждение, что любую задачу можно описать, сформулировать и свести к задаче нахождения априорного или апостериорного по Канту решения на графе, что соответствует разработанной Кантом новой всеобщей науки познания всего сущего.

Человеческий мозг невероятно сложно устроен, и познать его устройство, как он функционирует практически, в настоящее время, невозможно.

Предлагаемый метаразум представляет, из себя, имитатор человеческого мозга, разума и мышления. Имитация позволяет избежать физического исследования человеческого мозга, разума и мышления, что при отсутствии в настоящее время соответствующего инструментария и согласно теореме Гёделя о неполноте, не позволяющей изучать более сложную систему с помощью менее сложной, является оправданной.

Разработка имитатора человеческого мозга, разума и мышления является в настоящее время фундаментальным направлением развития современной науки и техники.

Основоположения метаразума включают:

– фигурный синтез метаразума;

– рассудочный синтез метаразума по Канту.

Третья глава посвящена в основном разработке принципов и механизма формирования знаний, понятий, суждений, представлений и образов для метаразума, которые раскрывают связь предмета с понятием через суждение, т.е. подведение созерцаний под чистые рассудочные понятия по Канту по определённым правилам (предмет подчинён понятию).

Модель метаразума

Со времён Аристотеля и Канта многими исследователями неоднократно осуществлялись попытки создать модель разума и мышления (МРМ).

Философия и математическая логика, изучавшая разум и мышление, начиная с Аристотеля и Канта, не смогли определить, что такое разум, интуиция и интеллект, а также в чём заключается разумность, критерий разумности и в какой логической схеме можно их отразить.

Разработанная Гильбертом МРМ, как дальнейшее развитие аристотелевской алгоритмической теории мышления, на основе его аксиоматического метода, и которая может существовать только в рамках формальной системы аксиом, оказалась впоследствии неполной.

Гёдель доказал неполноту формальных исчислений, что не позволяет осуществлять алгоритмизацию процесса мышления.

Гёдель впервые обосновал проблему о соотношении между человеческим мозгом, разумом и мышлением, и машинным искусственным разумом.

Попытки Гёделя найти единый математический аппарат для решения любых математических проблем не закончились успехом. Он не смог понять и объяснить, что такое разум и мышление и в чём заключается интуиция, присущая человеческому мозгу.

Его обращение к различным философским течениям, занимавшихся исследованиями разума и мышления человека, повлекли за собой его особое внимание к метафизики и теологии.

Первая теорема Геделя о неполноте арифметики, которая является дедуктивной формальной системой, утверждает, что в любой формальной системе исчислений существуют высказывания истинные, но недоказуемые в этой системе Он утверждает, что неразрешимые высказывания могут оказаться разрешимыми в более сильной системе, получаемой добавлением к исходной формальной системе неразрешимого высказывания, в качестве аксиомы. Для новой системы опять можно эффективно получить новое геделево неразрешимое высказывания. Итерация этого процесса дает расширение арифметики, которое оказывается бесконечным. В этом смысле Гёдель говорит о незавершённости математики. На каждом этапе конструируется новое неразрешимое высказывание, которое оказывается разрешимым при следующем расширении формальной системы исчислений