: в этом случае старший (самый левый) бит разрядной сетки отводится под признак знака (1 – отрицательное число, 0 – положительное число), при этом количество значимых байтов уменьшается до семи, а диапазон числа будет иным, от -2>7=-128 до 2>7=128.

Такой диапазон чисел явно недостаточен даже для бытовых расчетов. Для записи числа, принадлежащего большему диапазону, требуется памяти больше, чем один байт. Двухбайтовая ячейка (часто ее называют словом) дает диапазон хранения чисел соответственно 0—65536 либо, для знаковых целых чисел -32768 – 32767.

В редких случаях также используется представление целых чисел в четырехбайтовых ячейках. В некоторых случаях для хранения целых чисел небольшого разряда используют упаковку в 64-разрядное слово. Такое случается при использовании мультимедийной информации.

В современной микропроцессорной технике используются все указанные форматы хранения целых чисел.

Компьютерное представление вещественных чисел

Говоря о хранении вещественных чисел, следует особо рассмотреть вопрос точности их представления. При бытовых исчислениях обычно обходятся точностью до 2-3-го десятичного знака после запятой, практика научных и инженерных измерений использует 5—6 знаков. Однако нельзя исключать возможность использования очень длинной дробной части числа (допустим, числа {х} с высокой точностью) или бесконечной периодической дроби (например, результат деления 1/3).

Длина ячейки памяти конечна (кратна 8, разрядной длине байта), следовательно, имея в виду вышесказанное дробную часть нужно усекать до некоторой длины – для обеспечения оговоренной точности. В дальнейшем, при выполнении арифметических действий, неточности такого рода нарастают.

В компьютерах используется представление рациональных чисел с плавающей точкой.

Для представления двоичного числа с плавающей точкой требуется двабитовых поля разной длины для отдельного хранения мантиссы и порядка. Точность хранения числа определяется количеством разрядов, отведенных для хранения мантиссы.

В целях увеличения количества разрядов мантиссы (а значит количества значащих цифр) вещественные числа хранятся в нормализованном виде. Нормализованное число в старшем разряде мантиссы обязательно имеет цифру отличную от нуля:

0,0054321>10*10>3=0,54321>10*10>5 – нормализованное десятичное число

0,0100101>2*2>—2 = 0,100101>2*2>—1– нормализованное двоичное число

Как и в случае целых чисел, в программных системах могут использоваться несколько типов хранимых данных: Стандарты программного обеспечения требуют наличия 4-байтового и 8-байтового представления чисел, это числа одинарной и двойной точности.

Формат чисел одинарной точности использует старший бит как знаковый флаг, 8 разрядов для хранения порядка и 23 разряда для хранения мантиссы.



В представленной на рис.2.1. разрядной сетке числа -2,21*10>—5 старший разряд равен 1 (число отрицательное). Следующие восемь бит хранят характеристику – смещенный порядок, т.е. порядок числа, увеличенный на значение смещения. Значение смещения для четырехбайтового представления равно 127. Смещение порядка применяют для упрощения операций над числами с плавающей точкой. В рассматриваемом примере характеристика равна: 127+ (-5) =122>10= 1111010>2.

С девятого разряда размещается мантисса: 221>10= 11011101>2.

Громоздкая двоичная запись часто заменяется шестнадцатеричным представлением: BD6E10000.

Четырех байтовый формат хранения представляет числа в диапазоне 3,4*10>-38-3,4*10>38; точность этого формата составляет 7 знаков в десятичном представлении.

В случае если мантисса числа превышает имеющуюся у формата разрядность, младшие разряды округляются и отбрасываются: