Правила перевода чисел из одной системы счисления в другую
Правила перевода числа произвольной системы счисления в десятичную систему счисления:
– Проставить номера позиций цифр в числе (начиная от запятой влево и вправо);
– Каждую цифру числа умножить на основание системы счисления в степени соответствующей номеру позиции;
– Перевести значения цифр в десятичные (для 16-ричных чисел, для систем счисления с основаниями 2 и 8 не требуется);
– Вычислить сумму полинома.
Рассмотрим пример использования данного алгоритма для числа FB,0C>16
Пример использования данного алгоритма для числа FB,0C>16
FB,0C>16 = F·16>1 + B·16>0 +0·16>—1 +C·8>—2=
Правила перевода десятичного числа в иную систему счисления
– Целую часть числа последовательно делить нацело на основание системы счисления. «Собрать» остатки от деления, начиная с остатка от последнего.
– Дробную часть числа последовательно умножать на основание системы счисления, «сдвигая» целую часть произведений и продолжая умножение только дробной части, до заданной точности. «Собрать» целые части произведений, начиная с первого.
– При переводе в шестнадцатеричную систему счисления перевести значения результирующих цифр в шестнадцатеричные.
– Записать число (целую и дробную часть) и указать систему счисления.
Рассмотрим пример использования данного алгоритма для перевода числа 3338,78 в шестнадцатеричную систему счисления с точностью до четырех знаков после запятой
Пример использования данного алгоритма для перевода числа 3338,78 в шестнадцатеричную систему счисления
Из таблицы кодирования: 13= D>16; 10=A>16; 11=B>16; 14=E>16 4. D0A, BAE1>16
После выполнения преобразований 3338,78 в десятичной системе счисления записывается как D0A, BAE1>16
Итак, 3338,78= D0A, BAE1>16
Связь двоичной, восьмиричной и шестнадцатиричной систем счисления
Между системами счисления с основаниями 2, 8 и 16 существует связь, позволяющая легко переводить числа из одной системы в другую, используя следующий метод:
В двоичном числе от десятичной запятой вправо и влево выделять группы цифр по три – для перевода в восьмеричную и по четыре – для перевода в шестнадцатеричную (такие группы называются соответственно триадами и тетрадами). Если в конечных группах будет недостаточно цифр, то в группы следует добавить нули.
Каждую группу независимо от других перевести в одну соответственно восьмеричную или шестнадцатеричную цифру. Для обратного перевода (из восьмеричной или шестнадцатеричной – в двоичную) нужно проделать обратную операцию – каждую цифру вправо и влево заменить группой соответственно из трех или четырех двоичных знаков.
Примеры
Пример №1
Рассмотрим пример перевода двоичного числа 1010011110,11011>2 в шестнадцатеричную систему счисления.
1010011110,11011>2
В двоичном числе от запятой вправо и влево выделим группы цифр по четыре – тетрады. При недостатке цифр в тетраде добавим нули (в начале или конце).
10 \ 1001 \ 1110,1101 \ 1>2
0010 \ 1001 \ 1110,1101 \ 1000>2
По таблице кодирования определим соответствие записей в двоичной и шестнадцатеричной системам:
0010>2 = 2>16
1001>2 = 9>16.
1110>2 = E>16.
1101>2 = D>16.