. Интервал между соседними разрешенными уровнями называется шагом квантования. На практике чаще применяется равномерное квантование, при котором шаг квантования постоянный. На рис.3.1 представлена схема дискретизации и квантования звукового сигнала, где ΔА – шаг квантования устанавливает сохраняемые уровни значения амплитуды звуковой волны;Δt – шаг дискретизации звука (интервал снятия значений амплитуды звуковой волны по времени).



Рис.3.1. Дискретизация и квантование акустического сигнала


На рис.3.2 показана схема пространственной дискретизации. Изображение (слева) разбивается на геометрические элементы с шагом дискретизации Δl, в пределах которого значение цветовой характеристики может считаться неизменным. Результат применения шкалы квантования цвета по уровням градации с шагом ΔС показан справа на рисунке.





Рис. 3.2. Схема пространственной дискретизации

Достоинством дискретного представления информации является, в первую очередь, возможность автоматизации передачи и обработки сигналов с помощью компьютеров. Современный персональный компьютер позволяет работать с разнообразными данными: числами, символьными данными (текстом), графическими данными, звуковыми данными, и все данные в компьютере представлены в двоичном цифровом коде.

Формы представления чисел в компьютере и кодирование числовой информации рассматривались в предыдущей главе. Важными источниками информации являются кроме числовых текстовые, звуковые и графические данные.

Для записи слов была изобретена дискретная система кодирования – алфавит, но она не подходит для хранения и автоматической обработки в вычислительной технике. Двоичное кодирование символьных данных производится с помощью кодовых таблиц, в которых каждому символу соответствует двоичный код.

Для представления изображений используют два способа – растровый и векторный. Оба они используют двоичный код для хранения цветовых и пространственных характеристик.

Для представления звука в виде цифрового кода сигнал дискретизируют по времени и квантуют по уровню с помощью аналого-цифрового преобразователя.

Компьютерное представление текстовой информации

Текстовые данные являются важнейшим источником информации. Для записи слов человечеством были изобретены буквы, для указания оттенков речи – знаки препинания. Все это – символы, символьный способ хранения изначально дискретен, и способ компьютерного представления сводится к кодированию символов численным способом.

Все используемые способы представления символов в памяти компьютера, так или иначе, сводятся к нумерации символов алфавита и хранения полученных кодов как целых чисел. Этому коду драйвер видеокарты ставит в соответствие начертание символа (тем или иным шрифтом).

Такое кодирование производится размещением кодовых таблиц в оперативной памяти компьютера, по которым каждому символу ставится в соответствие двоичный код.

При кодировании языков, использующих алфавитную (не иероглифическую) письменность, достаточно 127 символов (в английском языке 26 букв +26 прописных «заглавных» +10 цифр + знаки препинания и арифметические знаки). Следовательно, для кодировки достаточно по 7 бит на каждый символ, этот принцип использует самая распространенная система кодирования латиницы – ASCII (American Standard Code for Information Interchange – американский стандартный код для обмена информацией). Код ASCII был разработан в 60-х годах XX века для любых видов передачи информации (телеграфа, телетайпа) и поэтому в нём, кроме информационных символов, используются символы-команды для управления связью. Эти символы: Начало текста, Конец текста, Звуковой сигнал, Горизонтальная табуляция и т. д. ныне вышли из употребления. Их коды являются служебными и трактуются большинством форматов как управляющие команды. Они занимают первые 31 позиции в таблице.