cм до размера Метагалактики – 10>27 см, т.е. оперирует М-интервалом [–33; +27] длиной в 60 порядков. Уточненная модель использует те же значения размеров – от10>–32,8 см до 10>28,2 см соответственно, т.е. рассматривает М-интервал [–32,8; +28,2] длиной в 61 порядок. Такая замена одного интервала на другой дает погрешность всего 1/60, т.е. всего 1,5%

Впервые наука столкнулась на странный масштабный порядок, которому трудно было дать какое-либо рациональное объяснение. Еще в начале века А. Эддингтоном и П. Эренфестом была обнаружена уникальная масштабная закономерность: оказалось, что разумная комбинация из различных космологических констант дает в результате одно и то же безразмерное число, близкое к 1040 или его кратное. Эта проблема привлекала внимание всех известных физиков, таких, как Эйнштейн, Гамов, Дирак, и других ученых, занимавшихся мировоззренческими проблемами устройства Вселенной. Оказалось, что полученный результат не следовал ни из одной теории, а многолетние попытки найти ему объяснение показали, что его нельзя вывести из какой-либо известной физической теории.

На размерной шкале десятичных логарифмов наш мир заключен в диапазоне 61 порядка: от максимона до Метагалактики (32,8 + 28,2 = 61). Наиболее известные и распространенные системы расположены на этой шкале в следующий ряд:

0 – максимоны, 2 – фотоны, 3, ядра электронов, 4 – протоны, ядра атомов, 5

– атомы водорода, 6 – живые клетки, 7 – человек, 8 – ядра звезд, 9

– звезды, 10

– ядра галактик, 11 – галактики, 12 – Метагалактика.


Таблица 2



Проблема получила название «проблема больших чисел». Она заключается в том, что существуют загадочные численные совпадения некоторых безразмерных численных отношений, составленных из атомных констант, скорости света и следующих космологических констант: возраста Вселенной tp, радиуса Вселенной Rp, средней плотности вещества во Вселенной ρp и гравитационной постоянной G.

Масштабный интервал в 40 порядков, который протянулся от протона до Метагалактики, свойствен не только соотношению размеров, но и соотношению масс, сил и времен. Некоторое время эти непонятные соотношения оставались предметом отдельного исследования. В 30-х годах на них обратил пристальное внимание П. Дирак, который понял, что они не случайны, а проявляют собой глубокую связь между космологией, гравитацией и электричеством. Он выдвинул гипотезу, что физические константы меняются со временем, и сформулировал следующий постулат – принцип Дирака: «Любые две очень большие (примерно 1040) безразмерные физические величины связаны простым математическим соотношением, в котором коэффициенты – величины порядка единицы».

Поскольку же этому принципу подчиняется и соотношение (4), в которое входит возраст Вселенной, то тут же встал вопрос:

– либо этот принцип действует во Вселенной всегда, но тогда с учетом изменяющегося возраста должны меняться космологические и атомные константы;

– либо данный принцип выполняется только в небольшой промежуток времени существования Вселенной, и тогда мы живем в каком-то особенном выделенном моменте ее развития.

Чтобы проверить первую версию, астрофизики провели теоретические исследования, направленные на поиск ответа: постоянны ли физические постоянные? Положительный ответ был получен с очень высокой точностью. Однако в ходе проверки выяснился еще один парадокс: оказалось, что любые, самые незначительные изменения физических констант приводят к тому, что вся Вселенная оказывается совершенно иной. Из этого следовал очевидный вывод: все константы «подобраны» таким образом, чтобы получилась Вселенная, в которой могла бы появиться жизнь, включая человека. Важным следствием из этого вывода является то, что все константы нашей Вселенной имеют не случайное значение, а строго увязанное друг с другом через неизвестный современной астрофизике закон их гармонизации.