Важным моментом во всей этой генно–инженерной «кухне» было создание принципиально новой технологии размножения индивидуальных фрагментов ДНК in vitro. Этот удивительно простой метод получения фрагментов ДНК в неограниченном количестве копий был придуман при необычных обстоятельствах – ночью, во время автомобильной поездки в горах Калифорнии. Автор этой идеи нобелевский лауреат Кэри Б. Мюллис так вспоминает момент озарения. «Иногда удачная идея приходит в голову совершенно неожиданно. Со мной, например, это случилось в одну из апрельских ночей в 1983 г., когда я, сидя за рулем автомобиля, пробирался по освещенной луной горной дороге в секвойные леса Северной Калифорнии. Мысль моя случайно натолкнулась на процесс, благодаря которому
Рис. 13. Схема процесса клонирования ДНК с использованием в качестве вектора бактериальной плазмидной ДНК
можно получать копии генов в неограниченных количествах. Теперь он называется полимеразной цепной реакцией». За создание новой технологии ее автор получил Нобелевскую премию.
Полимеразная цепная реакция (сокращенно ПЦР) дает возможность в течение дня из одной молекулы ДНК получать 100 миллиардов идентичных по структуре молекул. Эта реакция довольно проста в исполнении: нужны лишь ДНК, пробирка, несколько реагентов и источник нагревания и охлаждения. Препарат ДНК, который необходимо копировать, может быть получен и из кусочка ткани, и из капли засохшей крови, и из засушенной мумии, и даже из тела мамонта, пролежавшего несколько тысяч лет в вечной мерзлоте. Суть этого метода изображена на рис. 14 на цветной вклейке.
Рис. 14. Схема протекания полимеразной цепной реакции (ПЦР).
Сама процедура ПЦР заключается в следующем. Прежде всего, ДНК денатурируют, нагревая ее до 98°С. При этом две цепи ДНК, относительно слабо связанные между собой, разделяются друг от друга. Далее в ход идут так называемые затравки (праймеры) – короткие однонитевые фрагменты ДНК, которые комплементарны краям того участка генома, который собираются размножать (амп–лифицировать). Эти затравки гибридизуются с комплементарными участками однонитевых молекул ДНК, после чего специальный фермент (ДНК–полимераза) удлинняет затравки, строя молекулу ДНК по матрице (цикл 1). Затем продукты реакции вновь денатурируют и процедуру повторяют необходимое число раз. За 20—30 циклов из одной молекулы можно получить миллионы копий ДНК. Этот процесс подобен цепной ядерной реакции, но осуществляется в пробирке с помощью специального фермента – термостабильной ДНК–по–лимеразы. По этой причине он и получил название полимеразной цепной реакции.
Конечная цель – определение полной последовательности нуклеотидов в ДНК человека
Длительное время искали эффективные методы, позволяющие определять последовательность нуклеотидов в длинных молекулах ДНК (такое определение нуклеотидной последовательности получило название секвенирование, от анг. sequence – последовательность). Только в середине 70–х годов секвенирование протяженных участков ДНК стало возможным. Связано это было с изобретением принципиально новых подходов. В 1976 г. А. Максамом и У. Гилбертом был разработан метод прямого секвенирования, основанный на химической деградации ДНК. В данном случае осуществляется специфическая химическая фрагментация длинной цепи ДНК (поли–нуклеотида), радиоактивно меченной с одного конца. Затем препарат меченой ДНК разделяют на четыре порции и каждую из них обрабатывают реагентом, модифицирующим одно или два из четырех оснований, содержащихся в ней. После разделения в специальном геле меченых фрагментов по размерам (с помощью электрофореза) на рентгеновских пленках смотрят, что при этом происходит с нуклеотидной последовательностью, и на основании этого делают вывод о порядке расположения нуклеотидов друг за другом в каждом фрагменте ДНК. Однако метод оказался довольно сложным. В становлении этого метода на его начальных этапах существенную роль сыграл российский ученый академик А. Д. Мирзабеков, работавший в лаборатории У. Гилберта.