§280. Энрико Ферми (1934), объясняя количественную теорию излучения β-лучей, которая допускает существование нейтрино – частицы, предложенной Вольфгангом Эрнстом Паули, не имеющей электрического заряда и массой порядка величины электрона или менее, исследовал эмиссию электронов и нейтрино из ядра при бета-распаде. [598] Он применил метод, аналогичный тому, который используется в теории для описания эмиссии кванта света из возбужденного атома. Им выведены формулы среднего времени жизни и формы непрерывного спектра бета-лучей и проведено их сравнение с экспериментальными данными. Это была первая оценка массы нейтрино.

§281. Сразу же после открытия супругами Фредериком Жолио и Ирэн Жолио-Кюри (1934) искусственной радиоактивности177, Ферми пришёл к выводу, что нейтроны, поскольку они не имеют заряда и не будут отталкиваться ядрами, должны быть наиболее эффективным орудием для получения радиоактивных элементов, в том числе трансурановых. [599] Ферми (1934) в своей работе «Радиоактивность, наведенная нейтронной бомбардировкой» описал ряд экспериментов: источник нейтронов в виде цилиндрической ампулы, содержащей порошок бериллия и эманацию радия, помещался внутрь цилиндрических образцов из исследуемых веществ. [600] После облучения в течение некоторого времени образец переносился к счетчику178, регистрирующему излучение. Таким способом было изучено взаимодействие нейтронов с фтором, алюминием, кремнием, фосфором, хлором, железом, кобальтом, серебром, йодом: все эти элементы активировались. Ферми (1934) для продолжения опытов возглавил группу итальянских физиков-атомщиков, в которую входили Эдоардо Амальди, Эмилио Сегре, Оскар Д'Агостино, Франко Розетти, Бруно Понтекорво, Этторе Майорана и другие. Было обнаружено, что ядра атомов захватывают нейтроны в сотни раз эффективнее, если предварительно между мишенью и источником этих нейтронов разместить парафин или массу воды. Ферми быстро придумал простое объяснение этому явлению: быстрые нейтроны, сталкиваясь со значительным количеством нуклонов, замедляются, а медленный нейтрон, в отличие от слишком быстрого, может «спокойно» подойти к ядру и быть захваченным ядром с помощью сильного взаимодействия. В результате осуществлялась следующая реакция получения искусственных изотопов: ядро с зарядом Z и массовым числом N, захватив нейтрон, превращалось в изотоп с массовым числом N+1. В силу нестабильности данного изотопа ядро распадается с образованием электрона и антинейтрино. В результате получается элемент с зарядом ядра Z+1 и массовым числом N+1179. К концу 1934 года исследования были завершены. [601] Они показали, что замедление нейтронов различными веществами влияет на процесс их радиационного захвата. На основании этого решения было получено более 60 новых радиоактивных изотопов, обнаружен эффект неупругого столкновения нейтронов с атомными ядрами и открыто замедление нейтронов водородосодержащими веществами (эффект Ферми), который был запатентован в 1935 году.

§282. Известный физико-химик Ида Ноддак (1934) выступила в «Журнале прикладной химии» с заявлением: «Допустимо, что при бомбардировке тяжелых ядер нейтронами эти ядра распадаются на несколько больших осколков, которые являются изотопами известных элементов, хотя и не соседних с облученными». [602] Это предположение игнорировало тот факт, что во всех без исключения известных случаях превращение ядер приводило к образованию ядер атомов соседних элементов. [603] У данной гипотезы не было физической основы, в то время как против образования трансуранов в тот период не свидетельствовали ни один факт и ни одно теоретическое соображение. Ноддак предполагала, что тяжелые ядра распадаются при обстреле быстрыми нейтронами, так как нейтроны из бериллиево-полониевого источника имели энергию несколько МэВ и таковыми были все нейтронные источники того времени