Пахитена – укорочение и утолщение бивалентов (стадия толстых нитей).
Диплотена – гомологичные хромосомы бивалентов начинают расходиться (разрушается СК), но они связаны в нескольких зонах контакта – хиазмах. Число хиазм в биваленте может быть различным (обычно 2–3), в длинных хромосомах больше, чем в коротких. Хиазмычасто показывают, что между хроматидами происходит кроссинговер.
Диакинез – хромосомы достигают максимальной спирализации. Исчезают хиазмы, и к концу диакинеза хромосомы остаются связанными только в теломерных участках.
В конце профазы-1 центриоли расходятся к полюсам клетки.
Метафаза-1. Завершается формирование веретена деления. Биваленты концентрируются в экваториальной плоскости клетки.
Анафаза-1. Гомологичные хромосомы расходятся к полюсам клетки. Каждая хромосома состоит из двух хроматид, соединенных общей центромерой.
Телофаза-1. Обычно очень короткая. У полюсов клетки группируются гаплоидные наборы хромосом, в которых представлен только один из парыгомологов. Восстанавливаются структура ядра и ядерная мембрана. Происходит частичная деспирализация хромосом. В конце телофазы-1 наступает цитокинез и образуются две клетки с гаплоидным набором хромосом.
После телофазы-1 вновь образованные клетки сразу вступают в мейоз-2, который проходит по типу обычного митоза.
Профаза-2. Частично деспирализованные хромосомы хорошо различимы. Начинается процесс обратной спирализации хромосом. Разрушается ядерная мембрана, формируется веретено деления, центриоли начинают расходиться к полюсам клетки.
Метафаза-2. Хромосомы выстраиваются в экваториальной плоскости. Центромеры прикрепляются к микротрубочкам образованного веретена деления.
Анафаза-2. Происходит разделение центромер, и каждая хроматида становится самостоятельной хромосомой. Дочерние хромосомы направляются к полюсам клетки.
Телофаза-2. Формируются новые ядра с гаплоидным набором хромосом. Хромосомы деконденсируются. Наступает цитокинез.
Основное биологическое значение мейоза заключается в обеспечении постоянства числа хромосом на протяжении поколений при половом размножении. Важным следствием мейоза является обеспечение генетического разнообразия гамет в результате рекомбинации хромосом и кроссинговера.
Механизм распределения неядерных генетических структур (митохондрий, хлоропластов) при митозе и мейозе пока неизвестен.
Глава 4. Закономерности наследственности
Ключевой проблемой биологии, по-видимому, можно считать вопрос о том, как увековечивает свой опыт живая материя.
М. Дельбрюк (1906–1981), американский генетик, лауреат Нобелевской премии 1969 г.
Общебиологическое значение генетики обусловлено тем, что законы наследственности справедливы для всех организмов. Понятия, сформировавшиеся при изучении закономерностей наследования, являются базовыми для всех разделов генетики.
4.1. Основные генетические понятия и символика
Основы генетической терминологии были заложены еще во времена «классической» генетики, до эры молекулярной биологии. Одним из фундаментальных понятий генетики со времени ее становления было понятие единицы наследственности. Г. Мендель называл эти единицы «задатками». В 1909 г. датский генетик В. Иоганнсен предложил термин ген. В рамках классической генетики ген рассматривался как элементарная структура, кодирующая отдельный признак. В настоящее время понятие гена существенно расширилось и изменилось (мы вернемся к нему в разделе молекулярной генетики).
Варианты одного гена, возникающие в результате изменений (мутаций) получили название аллелей. Количество аллельных генов в популяции какого-либо вида может быть любым, но у конкретного организма число аллелей конкретного гена всегда равно двум – по числу гомологичных локусов гомологичных хромосом. Если в популяции количество аллелей какого-либо гена больше двух, то к такому гену применимо понятие множественного аллелизма.