3. Анафаза. Центромера делится пополам, и хроматиды начинают синхронно расходиться к полюсам клетки. С этого момента они становятся самостоятельными дочерними хромосомами. Большой теоретический интерес представляет механизм распределения хромосом, случайность или предопределенность этого процесса. Не совсем понятна роль веретена деления и центриолей. В конце анафазы на полюсах клетки группируются два идентичных хромосомных набора.

4. Телофаза. Завершается обособление двух кариотипов. Вокруг них образуются ядерные мембраны. Происходит деспирализация хромосом, формируются ядрышки. Распадается митотическое веретено деления. Завершает телофазу процесс разделения цитоплазмы – цитокинез, в котором главную роль играют структуры цито-скелета.

Данная схема митоза характерна для всех высших эукариот. Некоторые протисты и грибы имеют ряд особенностей процесса, не затрагивающих его сущность.

Основное биологическое значение митоза заключается в точном распределении генетического материала между дочерними клетками.

3.5. Мейоз

Современные представления о цитологических основах наследственности сформировались только после выяснения генетического смысла процесса мейотического деления клеток.

Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор хромосом. Его можно рассматривать как второй тип деления клеток. Мейоз также можно рассматривать и как специфичный вариант клеточной дифференцировки. Таким способом образуются половые клетки (гаметы) и споры.

Гамета – это клетка, способная сливаться с другой гаметой с образованием диплоидной клетки (зиготы), дающей новый организм.

Спора – это клетка, способная самостоятельно развиваться в новый организм.

В результате процесса мейоза из одной диплоидной клетки образуется 4 гаплоидных (гаметы или споры). У большинства организмов мейоз протекает принципиально сходно. Он состоит из двух последовательных делений: редукционное деление (мейоз-1) и эквационное деление (мейоз-2). В каждом из них различают 4 фазы: профазу, метафазу, анафазу и телофазу. Таким образом, весь процесс мейоза условно можно разбить на 8 этапов, плавно переходящих один в другой. Если другие пути на специализацию начинаются после М-периода клеточного цикла, то мейоз начинается после S-периода, т. е. после репликации хромосом.


Рис. 3.4. Синапсис гомологичных хромосом с образованием бивалентов в профазе мейоза


Профаза-1. Наиболее сложная, длительная и важная стадия мейоза. Помимо процессов, аналогичных процессам профазы митоза (спирализация хромосом, разрушение ядерной мембраны, исчезновение ядрышка, образование веретена деления), определяющее значение для всего последующего процесса имеет конъюгация гомологичных хромосом – синапсис. Соединенные пары гомологов называются бивалентами (рис. 3.4).

Гомологичные хромосомы связывает особая структура, образованная из белков кариоплазмы – синаптонемный комплекс (СК). В бивалентах гомологичные хромосомы могут обмениваться гомологичными участками. Такой процесс называется кроссинговером. Механизм кроссинговера довольно сложен. Кроссинговер вносит большой вклад в повышение генетического разнообразия, играет важную эволюционную роль и активно изучается на протяжении всей истории генетики. Однако до сих пор он сохраняет свои загадки.

В связи с длительностью и многообразием процессов профазы-1 ее обычно подразделяют на 5 подстадий.

Лептотена – начало спирализации и уплотнения хромосом.

Зиготена – начало (с отдельных участков) и завершение синапсиса гомологичных хромосом. Происходит формирование СК.