Труднее развивались работы по встречным пучкам тяжёлых частиц, поскольку для достижения заметного эффекта в этом методе требуются существенно релятивистские энергии, а даже для протонов это приводит к очень большим размерам накопителя. Только в 1971 году кольца в ЦЕРНе на энергию 25 ГэВ – единственная в мире на момент 80-х годов, где позже был создан БАК.
Большой Адронный Коллайдер
На начальном этапе развития установок со встречными пучками высказывалось немало разноречивых мнений об их конкурентоспособности с обычными ускорителями с неподвижной мишенью. Острота этих способов постепенно сгладилась, и сейчас общепринято, что эти два типа ускорительных установок не исключают, а взаимно дополняют друг друга. Во всяком случае эксперименты на встречных пучках не только не остановили, но даже стимулировали дальнейшее развитие традиционных ускорителей, о чём свидетельствую в дальнейшем эффективно разработанные и созданные модели подобных ускорителей.
Крупнейший шаг в этом направлении был сделан в 1967 году, когда к 50-летнему юбилею СССР был введён в строй протонный синхротрон на 76 ГэВ вблизи города Серпухова в Институте физики высоких энергий (ИФВЭ). Инжектором для него служил также крупнейший в то время протонный линейный ускоритель на энергию 100 МэВ. Кольцевая вакуумная камера ускорителя радиусом около 200 метров имеет сечение 195*115 мм, а полный вес магнита составляет 20 000 тонн, причём блоки магнита установлены с точностью до 100 мкм.
Ускоритель в Серпухове
В создании машины, сооружённой за шесть лет, принимали участие многочисленные институты и специализированные организации Советского Союза. Ускоритель бесперебойно работает вот уже свыше 10-ти лет, подвергаясь почти непрерывным усовершенствованиям и модификациям как с точки зрения самой машины, так и в смысле модернизации экспериментального оборудования, по объёму и стоимости вполне сравнимого с самим ускорителем. В экспериментальных работах в Серпухове активно участвуют учёные разных стран.
Несколько нарушая хронологию, что неизбежно при описании работ, которые проводятся в течение нескольких лет, важно остановиться ещё на некоторых направлениях ускорительной техники 60-70-х годов. Выше уже упоминалось об изохронных циклотронах – машинах, способных довести энергию протонов до значений порядка 1 ГэВ и одновременно обладающих основным преимуществом циклотрона – высокой средней интенсивностью. Этими же возможностями обладают также в принципе и линейные ускорители протонов.
Оба типа машин можно использовать в качестве генераторов мезонов, которые непосредственно не могут быть ускорены из-за малого времени жизни. В связи с этим направлением появился даже специальный термин – «мезонные фабрики». Несмотря на трудности, связанные со сложностью магнитной системы изохронного циклотрона и необходимостью разработки новых ускоряющих систем для линейного ускорения протонов до релятивистских энергий, эта задача была успешно решена. Также успешно работал швейцарский циклотрон SIN, канадская машина TRIUMF и изохронный циклотрон в Киеве. В 1972 году под руководством Л. Розена был запущен, хотя и не на полную расчётную интенсивность (1 мА), линейный ускоритель протонов на 800 МэВ в Лос-Аламосской Национальной лаборатории в США.
В СССР в 80-х сооружался линейный ускоритель протонов на большую энергию при участии Института ядерных исследований АН СССР, Московского радиотехнического института и НИИ электрофизической аппаратура имени Д. В. Ефремова. Не сказали своё последнее слово и циклотроны. Помимо традиционного использования для ядерной физики средних энергий, перед ними открылась широкая область ускорения тяжёлых ионов с достижением энергий порядка нескольких МэВ на каждый нуклон, сравнимой со средней энергией связи нуклона в ядре. Передовые позиции в этом направлении принадлежат лаборатории Г. Н. Флерова в Дубне, успешно синтезировавшей с помощью такой техники ряд трансурановых элементов.