В 80-х годах в этой лаборатории был запущен циклотрон с диаметром полюсных наконечников 4 метра изохронного типа, в котором ионы ускоряются в широком диапазоне массовых чисел (свыше 140) до энергии порядка 10 МэВ/нуклон. Вступают в строй и новые специализированные линейные ускорители тяжёлых ионов (Унилак, Германия).

В 1967 году на очередной международной конференции по ускорителям было доложено о советских работах по коллективным методам ускорения, проводившихся в Дубне под руководством В. И. Векслера, а после его смерти в 1967 году – В. П. Саранцева. На этот раз речь шла не об общей идее, а о конкретизации одного из методов В. И. Векслера – так называемого ускорения электронных колец, в которые захватываются ускоряемые ионы. Будучи ускоренными до сравнительно небольшой энергии, электронные сгустки должны увлекать с собой протоны, получающие при той же скорости гораздо большую энергию. Это сообщение вновь активизировало экспериментальные работы по коллективным методам.

В США, например, под руководством Э. Сесслера, Д. Кифа и других начал интенсивно разрабатываться проект под символическим названием ERA. Аналогичные работы были несколько позднее развёрнуты в Германии. Эти исследования много дали для понимания физики коллективного ускорения и связанных с ним трудностей, но к заметному успеху все же не привели. Наибольших успехов пока добились В. П. Саранцев и его сотрудники, ими были получены эффективные ускоряющие поля порядка 10 МВ/м, используемые для ускорения тяжёлых ионов.

На новом уровне возродились и некоторые старые идеи, приведшие к появлению новых типов ускорителей. Так, для создания электронных сгустков с большим числом частиц, требующихся для коллективных методов ускорения, наиболее подходящим инструментов оказался линейный индукционный ускоритель, предложенный А. Буверсом ещё в 1929 году. В современном техническом исполнении эта машина сейчас довольно широко используется для получения сильноточных (10>2—10>3 А) импульсов электронов с небольшой энергией порядка нескольких МэВ. Весьма удобной и надёжной машиной на малые энергии оказался также микротрон, для модернизации которого много было сделано лабораторией С. П. Капицы в Институте физических проблем.

Некоторые прикладные задачи, требующие получения очень мощных импульсов коротковолнового рентгеновского излучения, привели в середине 60-х годов к появлению сверх сильноточных электронных машин с токами до МА в импульсе при энергии от 1 до нескольких МэВ. Первые работы в этом направлении были, по-видимому, проведены Дж. Мартином в Олдермастонской лаборатории в Англии. Впоследствии эта техника была распространена и на ионные пучки. Являясь сейчас одним из наиболее мощных энергоносителей, которые осуществимы в лабораторных условиях, сильноточные электронные и ионные пучки используются в некоторых исследованиях, включая проблему управляемого термоядерного синтеза.

Однако в развитии ускорителей доминантными всегда оставались требования физики высоких энергий, под влиянием которых были осуществлены два протонных машин в диапазоне 0,1—1 ТэВ. Первым из них был запущенный в 1972 году синхротрон в Национальной лаборатории имени Ферми в Батейвии, недалеко от Чикаго, руководимой тогда Р. Вильсоном. Радиус орбиты этой машины, постепенно наращивавший свою энергию от 200 до 500 ГэВ, составляет 1 километр. Вслед за ним в конце 1976 года вступил в строй аналогичный ускоритель в ЦЕРНе на энергию 400 ГэВ. Этой работой руководил Дж. Адамс.

Также отмечая и крупнейший БАК, на энергию 6,3 ТэВ, созданный уже в 2008 году в том же ЦЕРН. При этом являясь ускорителем на встречных пучках, с радиусом 26 656 м, на протон-протонные реакции.