[r * dmv / dt] = [F * r]
d [r * mv] / dt = [dr / dt * mv] + [r * dmv / dt]
Здесь (dr / dt) принимается за тангенциальную скорость, образующуюся вдоль вектора силы:
dr / dt = v
А поскольку произведение коллинеарных векторов равно нулю
[dr / dt * mv] = 0,
то:
d [r * mv] / dt = [F * r]
или
M = F * r = dL / dt = m * ω * d (r>2) / dt = 2 * m * ω * dr / dt
Отсюда:
Fк = 2 * m * ω * v>r
Но, во-первых, хотя в этом выводе работа не упоминается вообще, иного определения произведения силы на расстояние, чем работа в физике не существует. Следовательно остаётся только классическое понимание работы, которое немыслимо без усредняющего множителя скорости и соответственно пути (½). Поэтому в этом выводе сила Кориолиса так же, как и у Фейнмана завышена вдвое.
А, во-вторых, этот вывод построен на вопиющем математическом и физическом противоречии. Если после дифференцирования первое слагаемое в правой части (dr / dt = v>т) принимается за тангенциальную скорость, образующуюся вдоль вектора силы, то в оставшемся после упразднения выражения ([dr / dt * mv] = 0) окончательном выражении, то же самое выражение для того же самого радиуса принимается уже за радиальную скорость (dr / dt = v>r). Причём в обеих частях уравнения моментов, что не имеет физического смысла ни для работы, ни для правила рычага. Это математическая абстракция и физический абсурд!
В отсутствие поддерживающей вращение силы, угловая скорость, например, при увеличении радиуса уменьшается. Поэтому поддерживающей силе приходится компенсировать эти потери, восстанавливая линейную скорость до прежнего значения. На это уходит половина поддерживающей силы, реакция на которую составляет половину классической силы Кориолиса.
Однако поскольку эти силы полностью скомпенсированы, то скомпенсированы и их реакции. Следовательно, эта уравновешенная часть поддерживающей силы не может определять силу Кориолиса, и совместно с истинной силой Кориолиса (см. гл. 3.4.2.) определяет лишь внутреннее напряжение ускоряющейся замкнутой системы тело—физический радиус (направляющая), которое естественно не определяет ускорение самой системы.
Далее, после полного восстановления линейной скорости, угловая скорость с учётом увеличившегося радиуса, всё ещё остаётся невосстановленной. При этом вторая половина поддерживающей силы, как раз и затрачивается на увеличение линейной скорости свыше её прежнего значения, за счёт чего окончательно восстанавливается и угловая скорость. Реакция на эту неуравновешенную половину поддерживающей силы и определяет силу Кориолиса, которая, таким образом вдвое меньше полной поддерживающей силы.
Аналогичный процесс происходит и при уменьшении радиуса. Подробное теоретическое обоснование равенства затрат обеих частей поддерживающей силы и структуры этих затрат приведено в главе (4.2.) в выводе силы и ускорения Кориолиса через мерный радиан.
Используя абсолютно правильный абстрактно-символьный математический аппарат, Фейнман допустил физическую ошибку в наиболее простой и доступной для понимания области физики – механике, в которой все физические законы и физические величины уже достаточно достоверно представлены в математике в виде символов, знаков и формул, представляющих собой алфавит и грамматику языка физики – математики. И уж тем более голая абстрактно-символьная математика без физики бессильна в тех областях физики, где алфавит и грамматика языка физики ещё окончательно не сложились.
Таким образом, сам по себе правильный абстрактно-символьный математический аппарат бессилен в изучении природы, если он идёт вразрез с физическим смыслом, т.е. с философией природы в целом.