Как бы то ни было, но если исходить из соображений работы, то классический момент силы (Мк) завышен вдвое по отношению к реальному моменту (Мр):

Мк = 2 * Мр

Этот момент реален вовсе не потому, что он момент, т.к. такой величины в природе не существует. Он реален по отношению к заданной реальной силе и её реальной работе, только из реальности которой можно получить хоть что-то физически реальное, в том числе и силу Кориолиса.

Тогда:

Мр = ½ * Мк = ½ * m * d (ω * r>2) / dt

После дифференцирования получаем:

Мр = ½ * Мк = ½ * 2 * m * ω * r * dr / dt = ½ * 2 * m * ω * r * V

Или:

Мр = m * ω * r * V

Из этого следует, что реальная сила Кориолиса (Fкр) определяется без «двойки»:

Fкр = m * ω * V

Это элементарная физико-математическая ошибка классической динамики вращательного движения, которую, однако, на протяжении более 200-от лет почему-то не замечали и до сих пор не замечают якобы правильные физики и якобы правильные математики. Математики не могли её заметить в принципе, т.к. они не физики, а операции с математическими кракозябликами в уравнении моментов проведены формально верно. А физики, видимо, тоже оказались больше математиками, чем физиками и соответственно тоже ничего не физического в выводе уравнения моментов не заметили.

Это ярчайший пример того, как из якобы правильной математики делается неправильная физика. А если без якобы, то всё происходит ровно наоборот.

Кто-то может возразить, что при выводе уравнения моментов обе его части сокращаются на (Δφ) или в нашей версии на (Δφ/2), поэтому на общее равенство уравнения это не влияет. Для математиков равенство действительно не изменяется, но для физиков его количественный уровень после сокращения уменьшится в (Δφ/2) раз. При этом для бессмысленного уравнения моментов сокращение на (Δφ/2) действительно не критично, потому что оно и так бессмысленное. А вот для физики и в частности для силы и ускорения Кориолиса – это недопустимо, т.к. эта бессмыслица не соответствует физике явления Кориолиса и работе силы.

Это как раз и означает, что (Мк = 2 * Мр). А для тех, кто с этим не согласен, напомним, что по той же логике сокращения на общие множители необходимо сократить всё уравнение моментов ещё и на радиус, после чего оно приобретёт свой естественный вид второго закона Ньютона (F = m * a). Это, кстати соответствует Закону сохранения истины в отношении второго закона Ньютона (см. гл. 2.). Тогда сила Кориолиса приобретёт своё естественное значение без притянутой за уши классической динамики вращательного движения и соответственно без пресловутой двойки.

F = m * dV/dt = m * ω * dr/dt = m * ω * V

Это как раз то, о чём мы говорили в первой части настоящей главы относительно правил решения уравнений только после их сокращения на общие множители. Цитируем первую часть: «…к примеру, уравнение вида (x * y = a * x>2 + b * x…) должно быть приведено к виду (y = f (x) = a * x + b…». Естественное значение силы Кориолиса (F = m * ω * V) можно получить и через мерную динамику вращательного движения (см. гл. 4.2), которую мы разработали взамен не имеющего физического смысла уравнения моментов чего-то, почему-то. Следовательно классическая динамика вращательного движения со всеми своими основными и не очень основными уравнениями не верна.

Сторонники классической физики могут возразить, что момент силы – это уже не работа, а совсем другая физическая величина, без множителя (½). Существует, например, вывод уравнения моментов через векторное умножение второго закона Ньютона на радиус, из которого после дифференцирования по (dt) получается уравнение моментов.