Все эти разновидности знания, полученного человечеством в процессе освоения реальности, составляют его общее наследие и в процессе глобализации постепенно адаптируются цивилизацией. Трансдисциплинарность помогает преодолеть различия и перебросить мост между парадигмами редукционизма и холизма, привнести в научное познание этическое измерение. Так, европейская медицина и философия постепенно стали осваивать и адаптировать восточные практики и логические системы мышления с акцентом на целостность. Трансдисциплинарность с ее алгоритмом выявления сложных проблем, синтезом наличных знаний и последующей рефлексией над сформированным проблемным полем лежит в русле этого движения.

Важную роль играет также когерентная познавательная деятельность поверх дисциплинарных барьеров. В сущности, теория систем, структурализм, теория эволюции, социобиология, концепции глобализма возникли и развивались на основе трансдисциплинарного подхода. Философия стремилась еще с античных времен увидеть и объяснить все сущее с точки зрения своих основных категорий и универсальных принципов, обладающих большой объяснительной силой. В связи с этим, например, антропологию можно назвать сверхдисциплиной, смотрящей на мир и его познание через человека как меру всех вещей[53].

Трансдисциплинарный подход позволяет также идентифицировать междисциплинарные области развивающегося знания и определить участников познавательного процесса, которые хотя и работают в рамках своей дисциплины, но в силу синергии образовательного процесса и широких организационных рамок научных сообществ постоянно испытывают на себе идеи и практическую ценность междисциплинарного подхода.

Интеграция знаний в биологии

Яркие примеры теоретического обобщения познавательной практики и междисциплинарного синтеза демонстрирует нам история биологического знания, получаемого при экспериментальном изучении явлений жизни.

Эта форма знания насчитывает десятки столетий, фактические восходя к эпохе неолитической революции, во время которой осуществлена доместикация растений и животных и на этой основе заложены основы выживания нашей цивилизации. В Месопотамии, Египте, Китае и Индии накапливали и преумножали знания об окружающем живом мире, включая и самого человека. Обобщение и систематизация этих знаний началась в античности и связана с именами Аристотеля (животные, лестница живых существ), Теофраста (растения), Гиппократа, Галена и Лукреция Кара (человек, происхождение жизни). В эпоху Возрождения возрос интерес к изучению биологического разнообразия и внутреннего строения живых организмов. В XVI в. появились работы великих анатомов (Леонардо да Винчи, А. Везалия, М. Сервета). В XVII в. У. Гарвей сообщил об открытии кровообращения. Использование микроскопа положило начало клеточной биологии и дало важный импульс дальнейшему развитию анатомии. В середине XVIII в. К. Линней разработал свою систему живой природы, ввел бинарную номенклатуру видов и заложил основы систематики как самостоятельной дисциплины. В этом же столетии было сформулировано учение об эпигенезе, открыт фотосинтез, пол у растений, изучен процесс дыхания и доказана невозможность спонтанного самозарождения жизни прямо сейчас. В XIX в. на основе изучения палеонтологических идей и геологических артефактов сначала восторжествовала идея эволюции жизни во времени (Ж. Кувье, Ж.-Б. Ламарк), а затем был сформулирован принцип естественного отбора в качестве движущей силы эволюционного процесса (Ч. Дарвин, А.-Р. Уоллес). В XX в. появились генетика, экология и молекулярная биология. Этот процесс завершился геномной революцией и возникновением системной биологии, ставящей цель познать все формы проявления жизни на уровне молекул от развития отдельного признака до планетарной биосферы и ее генетической составляющей. В XXI в. в современной биологии возникли программы нового эволюционного синтеза на основе синергетической модели, искусственного создания живых систем, конструирования гуманоидных роботов, управления фотосинтезом, сохранения биоразнообразия и среды обитания человека, начали формироваться экзобиология и астробиология.