Вы помните предмет спора математика с Дарвином? Ответ, как оказалось, был очень прост.


– Дарвин не был знаком с публикацией Менделя?


– Трудно сказать. По-видимому, нет. Информационная служба в тот период была не на очень высоком уровне. Надо сказать, что работа Менделя вообще оказалась никем не замеченной. Наука просто не была готова к восприятию такой основополагающей информации. Однако, спустя почти сорок лет после публикации пошло лавинообразное развитие генетики. Стало возможным решение вопросов, так долго мучивших и Ламарка и Дарвина и многих, многих других естествоиспытателей.

Оказалось, что внутриклеточные «корпускулы», о которых упоминал Дарвин, это не какие-то представители органов и тканей в половых клетках, а гены, кодирующие структуру и функции в клетках и, в конечном итоге, во всем организме и находятся эти гены в ядрах не только половых клеток, но и всех остальных соматических клеток. Именно они являются носителями наследственности. Каждый ген ответственен за четко определенную часть в сложном комплексе жизнедеятельности клетки. В каждой клетке генов насчитывают сотни и тысячи.

Например, Проект Геном человека, т. е. работа по составлению карты генов человеческого организма, начался в 1990 году, под руководством американского биолога Джеймса Уотсона, получившего в 1962 году Нобелевскую премию. совместно с Фрэнсисом Криком и Морисом Уилкинсом за открытие структуры молекулы ДНК. В 2000 году опубликовали черновик структуры генома, а полный геном – в 2003 году Работа продолжалась более 13 лет, в течение которых ученые пытались выяснить точную последовательность нуклеотидов в ДНК и расположение генов. Сейчас известно, что ДНК человека содержит более 25 тысяч генов

– «Ген», «генетика» – эти понятия давно уже стали привычными. Используются они широко, смысл их понятен, но все-таки трудно представить себе что же подразумевается под этими понятиями, какова их структура?


– Действительно, человеку, не обладающему специальными знаниями, трудно разобраться во всем этим. Дело в том, что гены представляют собой определенный набор химических соединений, называемых нуклеотидами, в состав которых входят азотистые основания – Аденин, Гуанин, Цитозин, Тимин. Соединяясь между собой в самых разнообразных комбинациях, они и составляют структуру гена, в котором могут находиться от десятков до нескольких сотен тысяч азотистых оснований. Каждый ген кодирует строго определенную структуру белка. Когда в клетке различные аминокислоты (их насчитывается 20) начинают соединяться друг с другом и образовывать белки, эти соединения образуются не беспорядочно, а в строгом соответствии с порядком расположения азотистых оснований в генах. Т. е. в генах зашифрованы количество и порядок расположения аминокислот в процессе синтеза белка. Порядок расположения аминокислот в белке, т. е., структура белка определяет его функцию. Варианты комбинаций двадцати аминокислот бесконечны и именно этим определяется бесконечное разнообразие белков, составляющих структуру и функции любого организма.

Время от времени в генах могут происходить случайные изменения. Могут выбиться из цепочки азотистые основания, или подсоединиться случайно другие. В клетке есть специальные ферменты, которые, подобно путевым обходчикам на железной дороге, следят за состоянием генов и, в случае каких-либо изменений, могут зашить разрывы, восстановить первоначальную комбинацию азотистых оснований в генах. Но ремонты не всегда протекают удачно и тогда, с изменением расположения азотистых оснований в генах, меняется и взаимное расположение аминокислот во вновь синтезируемом белке, что влечет за собой изменение функции этого белка.