4) включать новый материал небольшими частями и систематически повторять ранее изученное, раскрывая его связи с новым, показывая применение его в новых условиях;
5) рассматривать каждое понятие в развитии, постепенно раскрывая его свойства и связи с другими понятиями, обеспечивая на каждом этапе соответствующие обобщения;
6) широко использовать при изучении материала метод сравнения и др.
В соответствии этими требованиями построены ныне действующие учебники.
При обучении математике учащихся начальных классов в соответствии с содержанием программы, используются традиционные учебники, авторами которых являются М. А. Бантова, Г. В. Бельтюкова, С. И. Волкова, Н. Б. Истомина, М. И. Моро и др. Авторы-составители предлагают пользоваться учебными комплектами, которые традиционно включают непосредственно сами учебники для 1–4 классов, а так же рабочие тетради для индивидуальной работы учащихся.
Типовые учебники по математике основываются на том, что курс математики в начальной школе интегрированный, и содержит арифметический, алгебраический и геометрический материал. В объяснительной записке к курсу математики в начальных классах рекомендуется формировать математические умения и навыки по следующим направлениям: понятие числа – счётные операции – решение задачи. Умение пользоваться операциями счёта, с одной стороны, и умозаключениями с другой, способствует развитию умения решать математические задачи.
Переход начальной школы на вариативные программы и учебные пособия по математике, возможность выбора и конструирования собственной методики обучения, задачи всестороннего развития младших школьников средствами предмета – все это требует от учителя хорошей математической подготовки и, прежде всего, знания научных основ начального курса математики: различных подходов к определению понятия натурального числа и действий над ними, понятия величины и ее измерения, элементов алгебры и геометрии.
Процесс овладения математическими знаниями, умениями и навыками является сложной деятельность для младших школьников. Для детей 7-10 лет ведущей становится учебная деятельность. От неё зависит успешность дальнейшего развития ребёнка. В результате многолетних исследований В. В. Давыдова, Д. В. Эльконина были выявлены специфические компоненты и пути формирования учебной деятельности.
Под учебной деятельностью психологии понимают деятельность учащихся, направленную на приобретение теоретических знаний о предмете изучения и общих приёмах решения связанных с ним задач и, следовательно, на развитие школьников и формирования их личности.
В специальной литературе Епишевой О. Б., Крупич В. И. сформулированы приёмы учебной деятельности младших школьников в курсе математики.
Согласно классификации приёмов учебной деятельности, которая отражает их связь с содержанием учебного предмета и типами учебных задач можно выделить четыре группы приёмов.
I. Общеучебные приёмы, не зависящие от специфики предмета математики и используемые поэтому в разных учебных предметах. Эту группу можно разделить на две подгруппы:
1) приёмы общей, внешней организации учебной деятельности – организация внимания, планирование, работа с учебником, самоконтроль, организация домашней работы и т. д.; их можно также назвать приёмами управления учебной деятельностью;
2) приёмы мыслительной (внутренней) деятельности – овладение и оперирование представлениями, понятиями, суждениями, умозаключениями, мыслительными операциями.
II. Общие приёмы учебной деятельности по математике (общематематические приёмы) используются во всех математических дисциплинах. Это: