Каждый из этих методов обладает своими уникальными преимуществами и ограничениями и выбор метода зависит от конкретной задачи и доступности данных.
6. Какие основные виды задач решает машинное обучение? Дай определение сути и характеристику для каждого вида задач.
Машинное обучение используется для решения различных видов задач.
Вот основные виды задач, которые есть в современном машинном обучении:
1. Задачи классификации: В задачах классификации модель предсказывает дискретную метку или категорию. Например, задача определения, является ли электронное письмо спамом или нет, является задачей классификации. Здесь мы предсказываем дискретную переменную (спам или не спам).
2. Задачи кластеризации: Это тип задач, где модель группирует данные на основе их сходства, и эти группы называются кластерами. Этот процесс происходит без каких-либо предварительных знаний о данных, и в этом смысле он относится к обучению без учителя. Например, кластеризация может быть использована для сегментации клиентов на основе их покупательского поведения.
3. Задачи регрессии: Регрессия – это тип задачи, где модель предсказывает непрерывное значение. Например, предсказание цены на дом на основе различных характеристик, таких как площадь, количество спален, год постройки и т.д., является задачей регрессии. В этом случае, мы пытаемся предсказать непрерывную переменную (цена на дом) на основе других входных данных об этом доме.
4.Задачи Обучения с подкреплением (Reinforcement Learning): Сюда можно отнести примеры с управлением роботами (которые получают отклик от среды – плохо или хорошо они выполняют свои задачи), развитием навыков игровых агентов (получающие отклик от игровой среды – в случае выигрыша или проигрыша), систем рекомендаций (где отклик – это качество удовлетворения пользователей этими рекомендациями).
5.ЗадачиГенеративного ИИ: В отличие от задач классического машинного обучения (классификации, кластеризации и регрессии), Генеративные модели обучаются на данных и могут генерировать новые, ранее не встречавшиеся образцы данных. Данные могут представлять собой текст, изображения, речь и т. д. Задачи, которые могут выполнять такие модели, включают создание разнообразного контента: текстов, изображений, звука и музыки и т. д. Кроме этого, модели генеративного ИИ могут выполнять широкий класс задач, связанных с дальнейшей обработкой и преобразованием этого контента: ответы на вопросы, анализ настроений и тональности в текстах или видео; извлечение искомой информации из текста изображений, видео или аудио; маркировку изображений и распознавание объектов.