6. Обучение модели: На этом этапе алгоритм машинного обучения сам «обучает» модель, используя ваши данные и целевые значения. Это происходит путем настройки параметров модели таким образом, чтобы минимизировать ошибку между прогнозируемыми моделью результатами и реальными значениями результатов (взятыми из обучающих примеров).
7. Оценка модели: После обучения модели вам нужно оценить ее качество и производительность. Это обычно делается с помощью сравнения ответов модели с отложенным набором данных (тестовым набором), который не использовался при обучении. Метрики оценки могут включать точность, полноту и другие показатели работы модели. Важно получить модель, которая не будет переобученной, но и не будет недообученной – чтобы получать от нее потом хорошие результаты предсказаний
8. Тонкая настройка и оптимизация: После первоначального обучения и оценки модели вы можете оптимизировать и настраивать свою модель, изменяя параметры и используя различные техники, такие как кросс-валидация и регуляризация.
9. Развертывание модели (Деплой): После того, как модель была обучена, оценена и оптимизирована, она может быть «развернута» (на компьютерных системах и вычислительных мощностях) и использована для предсказаний на новых данных.
10. Процесс работы модели (Инференс): Обычно этот термин используют при работе с нейронными сетями. Инференсом называется непрерывная работа какой-либо нейронной сети на конечном устройстве. То есть, это процесс исполнения сети, когда она уже развернута и готова к проведению полезной работы. Для инференса используются процессоры общего назначения (CPU), графические процессоры (GPU) или специализированные процессоры для Машинного обучения и нейросетей (TPU).
Все эти шаги могут потребовать различных навыков и инструментов: знания основ математики, статистики, программирования, поддержки работы компьютерных систем, обработки и анализа данных и, конечно же, знания самого машинного обучения и предметной области, в которой вы решаете задачу.
4. Расскажи про основные параметры, определяющие качество и эффективность моделей Машинного Обучения?
Машинное обучение – это процесс, в ходе которого компьютерные модели «учатся» на данных и делают свои прогнозы или решения на основе этого обучения.
При создании моделей машинного обучения одним из самых важных этапов является оценка их работы. Без правильной оценки результатов есть риск начать использовать модель, которая может давать неверные прогнозы, принимать неправильные решения, пропускать важные случаи (в задачах выявления нужных объектов).
Чтобы узнать, насколько хорошо модель справляется со своей задачей – используют метрики качества моделей машинного обучения. Оценка моделей не только позволяет понять их эффективность, но и выявить возможные недостатки, которые стоит устранить.
Вот примеры метрик качества для моделей в машинном обучении:
Средняя абсолютная ошибка – Для задач, где модель предсказывает численные значения, эта метрика показывает, насколько в среднем прогнозы модели отличаются от истинных значений. Например, если модели нужно предсказывать температуру воздуха в течение какого времени, эта метрика покажет на сколько в среднем отклоняются предсказания модели (неважно – в большую или в меньшую стороны) от реальной температуры воздуха. Чем меньше отклонения – тем лучше модель.
Точность модели – Для задач, где нужно выбрать определенный тип объектов в общей выборке и не ошибаться с типом этих объектов (но можно что-то и пропустить), эта мера показывает, какой процент прогнозов модели был правильным. Например, нужно определить и выбрать клиентов, которые с большей вероятностью купят определенный товар. Так, если модель правильно предсказала 85 из 100 случаев, то её точность составляет 85%.