Приходится, однако, признать – математику со вздохом, гуманитарию с удовлетворением, – что в этой приближённости математических истин к абсолютным состоит некоторая ограниченность математики. Потому что тот мир, который дан нам в ощущениях, более адекватно отображается скорее в истинах, достаточно далёких от абсолютных.

Даже почитавшиеся незыблемыми законы Ньютона оказались пригодны лишь для сравнительно узкой полосы между микро- и макромирами, а вне этой полосы они требуют замены законами теории относительности.

Что уж говорить о так называемых прописных истинах гуманитарной сферы, будь то истины моральные или эстетические, которые с трудом поддаются, а то и вообще не поддаются оценке в терминах «верно» и «неверно».

XV

Казалось бы, что может быть важнее и первичнее, чем умение отличать истинные высказывания от высказываний ложных? Однако ещё более важным, ещё более первичным является умение отличать осмысленные высказывания от бессмысленных.

Вот характерный пример бессмысленного высказывания: «Рассмотрим совокупность всех слов, имеющих хотя бы одну общую букву». Это заявление бессмысленно, поскольку такой совокупности не существует. В самом деле, «рот» и «сыр» имеют общую букву «р» и потому должны принадлежать этой совокупности. Слово «око» должно принадлежать этой совокупности, поскольку имеет общую букву со словом «рот», и не должно ей принадлежать, поскольку не имеет общих букв со словом «сыр».

Мы потому назвали пример характерным, что подобные псевдоконструкции, ничего на самом деле не конструирующие, были довольно типичны для литературы по языкознанию несколько десятилетий назад. Возникало даже парадоксальное удовлетворение, когда некоторое утверждение можно было квалифицировать всего лишь как ложное. Чувство удовлетворения возникало потому, что ложность утверждения свидетельствовала о его осмысленности.

Преподавателю-математику, ведущему диалог со студентом-гуманитарием, зачастую приходится просить студента вдуматься в то, что тот только что сказал, и затем спрашивать, понимает ли студент, чтó сказал. Не столь уж редко честные студенты, поразмыслив, в некоторой растерянности признаются, что не понимают.

Когда знаменитого педиатра доктора Спока спросили, с какого возраста следует воспитывать ребёнка, он, узнав, что ребёнку полтора месяца, ответил: «Вы уже опоздали на полтора месяца». Не следует ли способность отличать осмысленное от бессмысленного и истинное от ложного неназойливо прививать уже с начальных классов школы? И не является ли это главным в школьном преподавании?

Надо сказать, что квалификация высказывания как ложного, бессмысленного или непонятного, как правило, требует некоторого усилия – иногда почти героического. Как же так, уважаемый человек что-то говорит или пишет, а ты осмеливаешься его не понимать или, поняв, возражать? Не все и не всегда способны на такое усилие.

XVI

Способность к усилию, о котором только что говорилось, вырабатывается (во всяком случае должна вырабатываться) на уроках математики и при общении с математиками. Дело в том, что математика – наука по природе своей демократическая. На её уроках воспитывается (а при косвенном воздействии – прививается) демократизм.

Внешние формы такого демократизма произвели большое впечатление на автора этих строк в его первые студенческие годы, когда в конце 1940-х гг. он стал обучаться на знаменитом мехмате – механико-математическом факультете Московского университета. Если почтенный академик обнаруживал, что выступающий вслед за ним студент собирается стереть с доски им, академиком, написанное, он с извинениями вскакивал с места и стирал с доски сам. Для профессора мехмата было естественно самому написать и вывесить объявление, но не для профессора гуманитарного факультета.