Парадокс гетерологичности. Назовём прилагательное гомологическим, если оно обладает тем свойством, которое это прилагательное выражает; в противном случае назовём его гетерологическим. Примеры: прилагательное «многосложный» само многосложно и потому является гомологическим; прилагательное «односложный» не односложно и потому является гетерологическим. Гомологично или гетерологично прилагательное «гетерологический»? Если оно гомологично, то, значит, обладает свойством, которое выражает, а свойство это – 'гетерологичность'; значит, рассматриваемое прилагательное гетерологично. Если же оно гетерологично, то, обладая выражаемым им свойством гетерологичности, должно квалифицироваться как гомологическое. Всё дело в том, что слова «гомологический» и «гетерологический» не обладают точным смыслом, в презумпции какового происходит рассуждение. Толкование этих слов опирается на толкование словосочетания «свойство, выражаемое прилагательным», а при толковании этого словосочетания возникают значительные трудности. Возьмём для примера прилагательное «простой». Возможно ли недвусмысленно указать свойство, выражаемое этим прилагательным? Где граница между простыми и непростыми сущностями? И обладают ли этим свойством простые дроби, простые числа, простые вещества, простые эфиры и василистник простой (растение семейства лютиковых)?
Вернёмся, однако, к тому, чем математика может быть полезна всем, в частности гуманитариям.
Воспитываемая на уроках математики дисциплина мышления помогает в числе прочего отчетливо разграничивать и различать истину и ложь (в вышеуказанном – математическом – значении последнего слова), доказанное и всего лишь гипотетическое, ведь нигде эти различия не проявляются с такой чёткостью, как в математике.
Автору очень хочется сказать, что математика – единственная наука, где достигается абсолютная истина, но он всё же на это не решается, так как подозревает, что абсолютная истина не достигается нигде.
В любом случае математические истины ближе к абсолютным, чем истины других наук. Поэтому математика – наилучший полигон для тренировки на истину. Истина – основной предмет математики.
Духовная культура состоит не столько в знаниях, сколько в нормах. Нормы проявляются прежде всего в противопоставлениях. Эстетика учит нас противопоставлению между прекрасным и безобразным, высоким и низким. Этика – между должным и недолжным, между нравственным, моральным и безнравственным, аморальным. Юриспруденция – между законным, правовым и незаконным, неправовым. Логика – между истинным и ложным.
Но логика сама по себе не создаёт истин. Её законы носят условный характер: если то-то и то-то истинно, то неизбежно истинно то-то и то-то. (Точно так же теория вероятностей не назначает и не может назначать вероятности того или иного события, а лишь указывает, как по одним вероятностям вычислять другие. Например, она не утверждает, что при подбрасывании монеты выпадение двух орлов подряд имеет вероятность одна четвёртая; она утверждает лишь, что если при одном броске выпадение орла имеет вероятность одна вторая и если результаты бросков не зависят друг от друга, то выпадение двух орлов подряд имеет вероятность одна четвёртая.) Знаменитый силлогизм про смертность бедного Кая не утверждает, что Кай смертен, а утверждает лишь, что если все люди смертны и если Кай – человек, то и он, Кай, смертен.
Истину же поставляют конкретные науки, в том числе математика. Кажется, это ставит математику на одну доску с другими науками. Но нет, это не так: её и только её истины могут претендовать на приближение к абсолюту, и они если не «совершенно», то «почти» абсолютны.