Пересмотр финансовых моделей, а значит, и ожидаемого прогноза, происходит на постоянной основе по факту выхода обновленной отчетности, публикации операционных результатов, значимых колебаний валютных курсов, цен на сырье. Задача такого пересмотра – получение как можно более точной оценки стоимости компании, расчет ключевых мультипликаторов, их сопоставление со средней величиной предшествующих значений (при наличии ретроспективных данных как минимум за последние 5 лет).

В результате аналитик получает возможность определить недооцененность или переоцененность акции, потенциал роста или снижения котировок. В этом смысле крайне важно уметь строить финансовые модели, в которых прогнозирование ключевых финансовых показателей будет с высокой степенью достоверности отражать фактические результаты. В качестве примера приведу финансовую модель, разработанную специалистами ИК «Велес Капитал» (табл. 2). Результатом ее построения является получение оценки стоимости бизнеса компании в целом, справедливой стоимости ее обыкновенных акций, возможного изменения стоимости под влиянием различных темпов роста компании в будущем и колебания средневзвешенной стоимости капитала (WACC).




Ожидания становятся целью финансовой аналитики и на уровне банков, для которых крайне важно понимание будущих финансовых результатов заемщиков и работа на опережение: своевременное изменение лимитов кредитования, процентных ставок и сроков, его приостановление, начало действий по реструктуризации задолженности в случае развития неблагоприятной динамики. Серьезным шагом в данном направлении можно назвать и разработки в области нейросетей, искусственного интеллекта и больших данных.

Сбербанк научился предсказывать выручку компаний. Зачем?[22]

Сбербанк России научился прогнозировать выручку компаний и ИП. Метод применим даже к тем компаниям, которые никогда не публиковали финансовую отчетность. Аналитики рассказали, как это поможет бизнесу Сбербанка.

Корпоративно-инвестиционный блок Сбербанка разработал модель предсказания выручки компаний и индивидуальных предпринимателей (ИП). В сообщении банка сказано, что модель построена для 8 млн российских компаний и ИП. Она способна прогнозировать по активному ИНН выручку за девять месяцев до публикации финансовых результатов.

Для построения модели требуется минимум три месяца. При исследовании используются более тысячи признаков компании, отметили в Сбербанке.

Предполагается, что еще до завершения календарного года и выхода официальной бухгалтерской отчетности банк с помощью этой модели сможет распознать потенциал своего клиента, чтобы сформировать для него подходящее предложение.

Система прогнозирования позволит предсказывать показатели даже тех компаний, которые еще ни разу не публиковали финансовые отчеты. Модель основана на методе машинного обучения Random Forest Regression.

Для чего Сбербанку такой механизм?

Прогнозирование финансовых показателей компаний и ИП позволяет планировать приход и отток денег, строить модели по ликвидности средств самого банка, точнее определять необходимость привлечения ресурсов и их оптимизации, считает руководитель группы аналитиков Центра аналитики и финансовых технологий Марк Гойхман. По его мнению, это позволит значимо уменьшить издержки банка и вероятные потери, а также повысить рентабельность.

Если система покажет качественный результат при анализе компаний, то, возможно, банк распространит систему и на работу с данными физических лиц, считает руководитель финтех-компании Exantech Денис Восквицов. Система может использоваться для точного таргетирования рекламных предложений, выявления аномальной активности и автоматического предотвращения мошенничества.