Разработка сложных автоматов, облик которых приобретал все большую реалистичность, более внимательное рассмотрение идеи компьютеров как мыслящих машин привели французского врача и философа Жюльена Офре де Ламетри к мысли предпринять исследование людей, животных и автоматов – столь же радикальное, сколь и скандальное. В статье 1747 года, которую он сначала опубликовал анонимно, Ламетри утверждал, что люди удивительно похожи на животных и обезьяна могла бы освоить человеческий язык, если бы ее «надлежащим образом учили». Ламетри также сделал вывод, что люди и животные – просто машины, управляемые инстинктом и опытом. «Человеческое тело – машина, которая сама заводит свои пружины; душа – не более чем принцип движения или материальная и ощутимая часть мозга»[23].

Из мысли, что люди представляют собой просто машины, приводимые в действие материальными силами, – то есть шестерни и колеса, выполняющие определенный набор функций, – следовало, что мы не особенные и не уникальные. Из нее также следовало, что, может быть, нас можно программировать. Окажись это правдой, от конструирования убедительно выглядящих уток и миниатюрных монахов люди когда-нибудь смогут перейти к изготовлению копий самих себя – и делать разнообразные разумные, мыслящие машины.

Можно ли построить мыслящую машину?

К 1830-м годам математики, инженеры и ученые всерьез взялись за постройку машины, способной производить вычисления так же, как люди-«компьютеры». Английский математик Ада Лавлейс и ученый Чарльз Бэббидж изобрели «разностную машину», а позже разработали проект более сложной «аналитической машины», решавшей математические задачи путем выполнения заранее определенной последовательности шагов. Бэббидж не предполагал, что его машина будет использована для чего-либо, кроме действий над числами. Именно Лавлейс в примечаниях к научной статье, которую тогда переводила, добавила изумительно глубокий комментарий, что более мощный вариант машины можно было бы использовать иначе[24]. Если машина способна манипулировать символами, обозначающими разные вещи (например, музыкальные ноты), тогда ее можно было бы использовать для «размышления» о вещах, лежащих за пределами математики. Хотя Лавлейс не верила, что компьютер когда-либо обретет способность к самостоятельному мышлению, она предвидела создание сложной системы, умеющей выполнять инструкции и таким образом подражать человеку во многих его повседневных задачах.

В ста милях к северу от Кембриджского университета, где работали Лавлейс и Бэббидж, молодой математик-самоучка по имени Джордж Буль шел через поле в Донкастере, когда его внезапно осенило: он решил посвятить свою жизнь расширению логики человеческого мышления[25]. Во время этой прогулки родилось то, что мы сегодня называем булевой алгеброй: способ упрощения логических выражений (например, «и», «или», «не») через использование символов и чисел. Скажем, вычисление выражения «истина и истина» должно давать результат «истина», что физически могло бы соответствовать положению переключателей или крышек луз на компьютере. Булю потребовалось два десятилетия на формализацию своих идей. И еще только через сто лет кому-то пришло в голову, что булева логика в сочетании с теорией вероятностей могла бы превратить компьютеры из средства автоматизации элементарных математических операций в более сложные мыслящие машины. Технологии, позволяющей построить такую машину, еще не было – отсутствовали необходимые процессы, материалы и источники энергии, – и проверить теорию на практике было невозможно.