Способность озона реагировать с органикой с одной стороны опасна – контакт озона с полимерами приводит к их разрушению и/или изменению их физико-механических свойств (например, увеличивается хрупкость), с другой стороны – способность озона окислять органику приводит к тому, что он применяется в отбелке целлюлозных материалов и обеззараживании питьевой воды.
Если ещё в 1990-е годы основным способом отбелки материалов было использование хлора и его соединений, то в настоящее время эволюция процесса отбелки тканей, бумаги и другого целлюлозосодержащего сырья направлена в сторону полного исключения молекулярного хлора и производных хлора с целью максимального снижения содержания хлорорганических соединений в отходах производства и в готовой продукции. В современной идеологии бесхлорной отбелки различают два направления:
1. Отбелка без молекулярного хлора (Elemental Chlorine Free – ECF), в которой не применяют элементарный хлор или гипохлориты, а отбеливающим реагентом является диоксид хлора.
2. Отбелка полностью без применения соединений хлора (Total Chlorine Free – TCF), здесь отбеливающими реагентами могут быть кислород, перекись водорода, пероксокислоты и озон (если внимательно посмотреть на упаковку офисной бумаги, на ней можно увидеть трехбуквенные обозначения – я вот на имеющейся у меня под рукой пачке «Снегурочки» вижу маркировку ECF).
Впервые в мире промышленное использование озона для отбелки древесной массы было осуществлено в 1975 году в г. Хекслунде (Норвегия) на фабрике для производства газетной бумаги производительностью 200 тыс. т в год. В настоящее время в Италии, Австрии, США, Швеции, Финляндии десятки предприятий имеют промышленные установки для отбелки озоном. Самая крупная из них (производительностью 1450 т/сут) смонтирована на заводе Мется-Ботния в г. Каскинен (Финляндия). В России опытная установка для обработки целлюлозы озоном была создана на Сясьском целлюлозно-бумажном комбинате в конце 1970-х годов, однако до промышленного внедрения разработка не была доведена, и информации о том, есть ли сейчас целлюлозно-бумажные производства, где используется отбелка озоном, я не нашёл.
Опять же – в Европе в настоящее время 95 % питьевой воды проходит озонную подготовку, в США идет процесс перевода с хлорирования на озонирование. В России на сегодняшний день существует всего несколько станций озонирования воды – в Москве и Нижнем Новгороде. Несмотря на уже упоминавшуюся токсичность озона, для конечного потребителя озонирование воды менее опасно, чем хлорирование, – озон достаточно быстро разрушается до дикислорода, не оставляя токсичных или нежелательных «следов» в обрабатываемой воде.
История озона началась ещё в XVIII веке, когда его считали «запахом электричества», сегодня мы знаем, что стратосферный озон можно считать «зонтиком-хранителем» жизни на Земле, но из-за его токсичности я бы предпочел, чтобы озон содержался в стратосфере, а к нам в тропосферу – ни-ни (помню я смог лета-2010 от горения лесов и не хочу освежать эти воспоминания в памяти).
1.8. Угарный газ, который не стоит путать с веселящим
Угарный газ (моноксид углерода, оксид углерода (II)) – один из наиболее распространенных отравляющих газов в природе. Формула его проста и незамысловата – СО. Главным источником угарного газа является неполное сгорание топлива, которое используется человечеством, – угля, нефти, мазута, природного газа, сушеного кизяка и других углеродсодержащих материалов, которые когда-то человечество сжигало для получения энергии. Точную статистику отравлений угарным газом по России найти не удалось, британцы уверяют, что на Острове ежегодно в среднем регистрируется около 50 смертельных случаев бытовых отравлений угарным газом только из-за неправильного использования каминов и прочих обогревательных систем.