Обычно пиротехнические составы, дающие светло-голубое пламя, получают, используя металлическую медь или медьсодержащие вещества в комбинации с источником хлора. Принцип действия составов основан на том, что при высокой температуре хлор реагирует с медью с образованием хлорида меди (I). Другими способами получить полноценное голубое пламя очень сложно. Тот же Томас Клапотке в соавторстве с Джессом Сабатини (Jesse Sabatini), работающим в подразделении пиротехнических составов армии США, смог получить не содержащую хлор смесь химических веществ, которая горит светло-голубым пламенем (Angew. Chem. Int. Ed., 2014, doi: 10.1002/anie.201405195) и представляет собой практичную альтернативу обычным составам для фейерверков и сигнальных огней.

Новая пиротехническая смесь содержит йодид меди (I), который отличается значительной эмиссией в голубой области видимого спектра. Помимо того что CuI экологичнее существующих пиротехнических составов, новая смесь отличается большей спектральной чистотой, чем традиционные комбинации веществ, которые применяются в пиротехнике.

Работая уже без Клапотке, Джесс Сабатини выяснил, как получить зелёные во всех смыслах пиротехнические составы. Он обнаружил, что при использовании в фейерверках карбида бора получается такая же эффективная зелёная окраска, какую дают применяющиеся в настоящее время в пиротехнических составах производные бария (Angew. Chem. Int. Edn., 2011; doi:10.1002/anie.201007827).

Работа Сабатини началась с того, что он получил от армии США заказ на разработку дешёвой, не содержащей бария альтернативы ручной сигнальной ракете зелёного пламени M125A1, основой состава которой является смесь нитрата бария с поливинилхлоридом. Эта смесь горит зелёным пламенем с образованием хлорида бария.



В поисках кандидатов на новый пиротехнический состав без бария и хлора исследователи обратили внимание на бор. Порошок аморфного бора сгорает зелёным пламенем с образованием оксида бора, однако сгорание аморфного бора происходит слишком быстро, чтобы применять его в пиротехнических составах. Исследователи обнаружили, что скорость горения можно замедлить, добавив к бору аморфному другую аллотропную модификацию – бор кристаллический, но кристаллический бор слишком дорог.

Как отмечает Сабатини, исследователям казалось, что они находятся на грани прорыва, и они решили провести скрининг «экзотических» производных бора. В ставших уже классикой химических статьях 1950-х – 60-х годов Сабатини с соавторами обнаружили информацию о том, что отличающийся крайней химической инертностью при комнатной температуре карбид бора проявляет значительную химическую активность при повышенной температуре. Введение значительных количеств карбида бора в аморфный бор значительно увеличило время горения пиротехнического состава, но, более того, исследователи с удивлением обнаружили, что наиболее эффективным временем горения отличается чистый карбид бора. Не меньшее удивление вызвали эти результаты и у коллеги Сабатини по пиротехнике. Клапотке высоко оценил его работу, отметив, что именно химическая инертность карбида бора в своё время привела к тому, что это соединение не рассматривали как возможный компонент для пиротехнических составов.



Пиротехники ХХI века не обошли вниманием и такой тип взрывчатых веществ, как инициирующие взрывчатые вещества. Основным инициирующим веществом для детонаторов в боеприпасах в настоящее время является токсичный азид свинца.

В наибольшей степени вредное влияние «капсюльного» свинца на окружающую среду проявляется на армейских стрельбищах, где свинец из инициирующих взрывчатых веществ попадает в окружающую среду десятилетиями, из-за чего его концентрация на этих местах приблизилась к критическому уровню, и военнослужащие, равно как и гражданский персонал, обеспечивающий работу стрельбища, регулярно подвергаются воздействию свинца. Инициирующие взрывчатые вещества на основе азида свинца применяются в военных и полицейских боеприпасах, а также в детонаторах, которые применяются в ходе горных разработок. Только в США ежегодно производится около 10 миллионов тонн устройств, содержащих азид свинца, при этом из-за их использования в окружающую среду ежегодно попадает около 350 килограммов свинца.