В наше время появилась новая разновидность витализма. В этой более изощренной форме упор делается не столько на присутствие искры жизни, сколько на то, что современные редукционистские, материалистические объяснения неспособны объяснить загадку жизни. Это направление мышления отражает убеждение, что сложность живой клетки возникает в ходе множества взаимодействующих химических процессов, образующих взаимосвязанные циклы с обратной связью, и все это не может быть описано лишь в понятиях тех процессов и реакций, из которых оно состоит. В результате витализм сегодня проявляется в облике смещения акцента с ДНК на «эмерджентные» свойства клетки, которые оказываются чем-то бóльшим, чем сумма ее молекулярных частей и того, как они работают в конкретной среде.

Результатом этого нового утонченного витализма становится стремление некоторых ученых принизить или даже игнорировать центральную роль ДНК. По иронии судьбы редукционизм не помог. Сложность клеток, вместе с продолжающимся подразделением биологии на учебные дисциплины в большинстве университетов, привела многих на путь „белкоцентричности“, противостоящей ДНК-центричному взгляду на биологию. В последние годы ДНК-центричная точка зрения все сильнее склоняется к эпигенетике, системе «переключателей», которые включают и выключают гены в ответ на такие факторы окружающей среды, как стресс или питание. Многие сейчас ведут себя так, как будто область эпигенетики на самом деле отделена и независима от биологии, основанной на ДНК. Когда кто-то начинает приписывать цитоплазме неизмеримые свойства, он тем самым невольно попадает в ловушку витализма. То же самое относится к подчеркиванию загадочных эмерджентных свойств клетки помимо ДНК, что равносильно возрождению принципа Omnis cellula e cellula и идеи, что все живые клетки происходят от ранее существовавших клеток.

Это, конечно, верно, что клетки оказались первичной биологической основой для всего, что мы знаем как жизнь. Понимание их структуры и содержимого стало в результате основой для важных фундаментальных дисциплин – клеточной биологии и биохимии. Однако, как я надеюсь показать, без своей генетической информационной системы клетки проживут от нескольких минут до нескольких дней. Без генетической информации у них нет средств для создания белковых компонентов или их оболочки из липидных молекул, которые образуют мембрану, удерживающую их водянистое содержимое. Они не будут эволюционировать, они не будут воспроизводиться, и они не будут жить.

Хотя мы осознаем, что миф, сложившийся вокруг Вёлерова синтеза мочевины, неточно отражает исторические факты, связанные с этим сюжетом, фундаментальная логика его эксперимента по-прежнему оказывает мощное и обоснованное влияние на научные методы. Сегодня стандартный способ доказать, что предполагаемая химическая структура исследуемого вещества верна, состоит в том, чтобы синтезировать такую структуру и показать, что результат синтеза имеет все свойства природного продукта. Десятки тысяч научных статей начинаются с такой предпосылки или содержат фразу «доказано синтезом». Мое собственное исследование руководствовалось принципами письма Вёлера от 1828 года. Когда в мае 2010 года моя группа в Институте Крейга Вентера (JCVI) синтезировала целую бактериальную хромосому посредством компьютерной программы и четырех бутылей химикатов, а потом вставила хромосому в клетку, создав первый синтетический организм, то мы действовали по аналогии с работой Вёлера{30} и его «синтезом как доказательством».

Материалистический взгляд на жизнь как машину приводил некоторых ученых к попытке сотворения искусственной жизни вне биологии, на основе механических систем и математических моделей. К 1950-м, когда ДНК окончательно признали материальным носителем генов, механистический подход уже маячил в научной литературе. В этой версии жизнь должна появляться из сложных