О, либо 9. Так вы и должны ответить: «О или 9».

Вот видоизменение того же фокуса: вместо того чтобы из задуманного числа вычитать сумму его цифр, можно вычесть число, полученное из данного какой-либо перестановкой его цифр. Например, из числа 8247 можно вычесть 2748 (если получается число большее задуманного, то вычитают меньшее из большего). Дальше поступают, как раньше сказано:

8247 – 2748 = 5499;

если зачеркнута цифра 4, то, зная цифры 5,9,9, вы соображаете, что ближайшее к 5 + 9 + 9, т. е. 23, число, делящееся на 9, есть 27. Значит, зачеркнутая цифра 27–23 = 4.

13а. Отгадать число, ничего не спрашивая

Вы предлагаете товарищу задумать трехзначное число, не оканчивающееся нулем, такое, в котором крайние цифры разнятся больше чем на 1, и просите затем переставить цифры в обратном порядке. Сделав это, он должен вычесть меньшее число из большего и полученную разность сложить с нею же, но написанною в обратной последовательности цифр. Ничего не спрашивая у загадчика, вы сообщаете ему число, которое у него получилось в конечном счете.

Если, например, было задумано 467, то загадчик должен выполнять следующие действия:


Этот окончательный результат – 1089 – вы и объявляете загадчику. Как вы можете его узнать?

Рассмотрим задачу в общем виде. Возьмем число с цифрами а, b, с. Оно изобразится так:


100а + 10 b + с.


Число с обратным расположением имеет вид:


100с + 10 b + а.


Разность между первым и вторым равна:


99а – 99с.


Делаем следующие преобразования:

99 а – 99 с = 99 (а – с) = 100 {а – с) – а + с = 100(а – с) — 100 + 100 – 10 + 10 – а с = 100 (а – с — 1) + 90 + (10 – а + с).


Значит, разность состоит из следующих трех цифр:

цифра сотен: а – с — 1,

« десятков: 9,

« единиц: 10 + с – а.


Число с обратным расположением цифр изображается так:

100(10 + с – а) + 90 + (а – с — 1).


Сложив оба выражения


100 (а – с — 1) + 90 + 10 + с – а 100(10 + с – а) + 90 + а – с — 1,


получаем


100 х 9 + 180 + 9 = 1089.


Каковы бы ни были цифры а, Ь, с, в итоге выкладок всегда получается одно и то же число: 1089. Нетрудно поэтому отгадать результат этих вычислений: вы знали его заранее. Понятно, что показывать этот фокус одному лицу дважды нельзя – секрет будет раскрыт.

14. Кто что взял?

Для выполнения этого остроумного фокуса необходимо подготовить три какие-нибудь мелкие вещицы, удобно помещающиеся в кармане, например карандаш, ключ и перочинный ножик. Кроме того, поставьте на стол тарелку с 24 орехами; за неимением орехов годятся шашки, кости домино, спички и т. п.

Троим товарищам вы предлагаете во время вашего отсутствия в комнате спрятать в карман карандаш, ключ или ножик, кто какую вещь хочет. Вы беретесь отгадать, в чьем кармане какая вещь.

Процедура отгадывания проводится так. Возвратившись в комнату после того, как вещи спрятаны в карманах товарищей, вы начинаете с того, что вручаете им на сохранение орехи из тарелки.

Первому даете один орех, второму – два, третьему – три. Затем снова удаляетесь из комнаты, оставив товарищам следующую инструкцию. Каждый должен взять себе из тарелки еще орехов, а именно: обладатель карандаша берет столько орехов, сколько ему было вручено; обладатель ключа берет вдвое больше того числа орехов, какое ему было вручено; обладатель ножа берет вчетверо больше того числа орехов, какое ему было вручено.

Прочие орехи остаются на тарелке.

Когда все это проделано и вам дан сигнал возвратиться, вы, входя в комнату, бросаете взгляд на тарелку и объявляете, у кого в кармане какая вещь.

Фокус тем более озадачивает, что выполняется без участия тайного сообщника, подающего вам незаметные сигналы. В нем нет никакого обмана: он целиком основан на арифметическом расчете. Вы разыскиваете обладателя каждой вещи единственно лишь по числу оставшихся орехов. Остается их на тарелке немного – от 1 до 7, и счесть их можно одним взглядом.