Такое простое и универсальное поведение действовало на физиков как валерьянка на котов, потому что оно предполагало, что в основе этого явления должен быть простой и всеобщий принцип. В поздние 1500-е годы Галилео Галилей и Симон Стевин эмпирически продемонстрировали, что различные материалы и гири падают с одинаковым ускорением: Стевин бросал два свинцовых шара, один в десять раз тяжелее, чем другой, с церковной колокольни[28].

Это наблюдение позволило Исааку Ньютону разработать закон всеобщего тяготения в 1600-х годах. Через несколько сотен лет еще одно направление, основанное на том же принципе, вдохновило Альберта Эйнштейна на создание общей теории относительности, которая до сих пор остается нашей лучшей теорией гравитации.

Эйнштейн вспоминал ключевой момент в развитии своей теории – в 1907 год, когда его озарило понимание, что человек, падающий с крыши, будет чувствовать невесомость во время падения. Появилась связь между ускорением и гравитацией, что и является основой общей относительности. Эйнштейн говорил об этом как о «самой счастливой мысли всей своей жизни». Математическая проработка последствия этой счастливой мысли заняла почти восемь лет, но ученый создал одну из величайших и наиболее успешных теорий современной физики.

Универсальное поведение теплового излучения в таком случае представляется похожим на многообещающий источник озарения: на этом явлении хорошо тестировать идеи о распределении энергии в горячих объектах и способах взаимодействия света и материи. К несчастью, в конце 1800-х годов усилия физиков предсказать цвет света, испускаемого горячими предметами при различных температурах, потерпели неудачу.

В конце концов объяснение температурного излучения потребовало радикального разрыва с существующей физикой. Начальная точка для всей квантовой теории, чье применение физики все еще обсуждают по прошествии столетия, обнаруживается в красном свечении нагревательных элементов, которые мы используем для приготовления завтрака.

В практическом смысле все экзотические явления, связанные с квантовой физикой – дуальная волновая природа частиц, кот Шрёдингера, «спутанная связь» на расстоянии, могут быть продемонстрировано прямо на вашей кухне.

Световые волны и цвета

Как часто случается, самый простой способ объяснить необходимость в радикально новой теории – это демонстрация провала прежней теории. До того, как мы поймем, как квантовая модель решила проблему теплового излучения, мы должны увидеть, почему этого не смогла сделать классическая физика. Для этого, несомненно, нужно разобраться в основах того, что классическая физика говорит о свете, тепле и материи.

Первой, очень важной, концепцией, лежащей в основе экспериментов, которые привели к разрушению классической физики, считается идея, что свет – это волна. Волновая природа света была известна за полвека до уравнений Максвелла, по большей части благодаря экспериментам, выполненным около 1800 года английским эрудитом Томасом Юнгом[29]. Физики спорили, представлять свет лучше всего как поток частиц или как волну в какой-то субстанции, но Юнг убедительно продемонстрировал волновую природу своим гениально простым экспериментом со светом «на двух щелях»: свет проходил через две узкие щели, прорезанные в экране. Юнг обнаружил, что свет, который проникал через две близко расположенные прорези в экране, с другой стороны не превращался в две яркие полоски, как можно было бы ожидать (как в случае со светом, проходившим через одну прорезанную щель). Вместо этого на экране появлялся ряд светлых и темных точек