В заколдованном шаре

Один предприниматель (конечно, американец) устроил для развлечения публики очень забавную и даже поучительную карусель в форме шарообразной вращающейся комнаты. Люди внутри ее испытывают такие необыкновенные ощущения, какие мы считаем возможными разве только во сне или в волшебной сказке.

Чтобы понять устройство этого заколдованного шара, вспомним сначала, что испытывает человек, стоящий на быстро вращающейся круглой платформе. Центробежная сила, развивающаяся при ее вращении, стремится отбросить человека наружу; чем дальше вы стоите от центра, тем сильнее будет клонить и тянуть вас наружу. Если вы закроете глаза, вам будет казаться, что вы стоите не на ровном полу, а на наклонной плоскости, на которой с трудом сохраняете равновесие. Это станет понятно, когда рассмотрим, какие силы действуют здесь на ваше тело (рис. 32). Центробежная сила тянет вас горизонтально; тяжесть – тянет вниз; обе силы, складываясь по правилу параллелограмма, дают равнодействующую силу, которая тянет тело наклонно вниз. Чем быстрее вращается платформа, тем больше становится эта равнодействующая и направляется более отлого.


Рис. 32. Что испытывает человек на краю вращающейся платформы. (Платформа изображена в разрезе.)


Представьте же себе теперь, что край платформы загнут вверх, и вы стоите на этой наклонной, отогнутой части. Если платформа неподвижна, вы в таком положении не удержитесь, а сползете или даже опрокинетесь. Другое дело, если платформа вращается: тогда эта наклонная плоскость станет для вас, при известной скорости, как бы горизонтальной, потому что равнодействующая веса и центробежной силы направится тоже наклонно, под прямым углом к отогнутой части платформы[23].


Рис. 33. Человек спокойно стоит на наклонной части вращающейся платформы.


Легко понять, что чем центробежная сила больше, тем под бóльшим углом должна быть наклонена платформа, чтобы находящийся на ней человек не упал, – и наоборот. Центробежная же сила, как известно, возрастает с удалением от оси. Если вращающейся платформе придать такую кривизну, чтобы при определенной скорости угол наклона ее поверхности в каждой точке соответствовал направлению равнодействующей, то помещенный на ней человек будет чувствовать себя во всех ее точках, как на горизонтальной плоскости. Математическим вычислением найдено, что такая кривая поверхность есть внутренняя поверхность особого геометрического тела – параболоида. Эту поверхность можно получить, если быстро вращать вокруг своей оси стакан, до половины налитый водою: тогда вода у краев поднимется, а в центре опустится, и поверхность ее примет форму параболоида.


Рис. 34. Велосипедист, едущий по наклонной круговой дорожке, удерживается в равновесии центробежной силой.


Если вместо воды в стакан налить растопленный воск и продолжать вращение до тех пор, пока воск не остынет, то затвердевшая поверхность его даст нам точную форму параболоида. При известной скорости вращения такая поверхность является для тяжелых тел как бы горизонтальной: шарик, положенный в любую ее точку, не скатывается вниз, а остается в равновесии (рис. 35).

Теперь легко будет понять устройство заколдованной сферы. Дно ее (см. рис. 36) составляет большая вращающаяся платформа, которой придана кривизна параболоида. Хотя вращение, благодаря скрытому под платформой механизму, совершается чрезвычайно плавно, но все же люди на платформе испытывали бы головокружение, если бы все окружающие предметы не перемещались вместе с ними. Чтобы избежать этого и не дать возможности наблюдателю догадаться, что он движется, вращающуюся платформу помещают внутри большого шара, непрозрачные стенки которого движутся с такою же скоростью, как и сама платформа.