Рис. 25. Если вы хотите подбросить шляпу так, чтобы удобно было ее поймать – сообщите ей вращение (вокруг вертикальной оси).


Рис. 26. Ядро, вылетевшее из нарезного канала пушки, вращается вокруг своей продольной оси (АА) и поэтому во все время полета остается параллельным самому себе.


Новое решение Колумбовой задачи

Колумб решил свою задачу о том, чтобы поставить яйцо, чересчур уж просто: надломил скорлупу.

Такое решение, в сущности, неверно: надломив скорлупу яйца, Колумб изменил его форму и, следовательно, поставил не яйцо, а другое тело; ведь вся суть здесь в форме яйца – изменяя форму, мы тем самым как бы заменяем его другим телом. Колумб дал решение задачи не для того тела, для которого оно искалось.

А вы можете решить задачу великого мореплавателя, нисколько не изменяя формы яйца, если воспользуетесь свойством волчка; для этого достаточно только привести яйцо во вращательное движение вокруг его длинной оси, и оно будет, не опрокидываясь, стоять некоторое время на тупом или даже на остром конце. Как это сделать – показывают рисунки 27 и 28: яйцу придают вращательное движение, быстро перекатывая его между пальцами. Отняв рýки, вы увидите, что яйцо продолжает еще некоторое время вращаться стоймя: задача Колумба решена!


Рис. 27. Как поставить яйцо, не надламывая его.


Рис. 28. Решение задачи Колумба: яйцо вращается стоймя.


Для опыта необходимо брать непременно вареные яйца[20]. Сколько бы вы ни старались, вам едва ли удастся заставить вращаться сырое яйцо, потому что внутренняя жидкая масса является в данном случае как бы тормозом. В этом, между прочим, состоит простой способ отличать сырые яйца от сваренных вкрутую – секрет, не известный многим хозяйкам.

Уничтоженная тяжесть

На рис. 29 изображен опыт, который, наверное, знаком вам: вращая достаточно быстро стакан с водой, как показано на рисунке, вы достигаете того, что вода не выливается из стакана даже в той части пути, где стакан опрокинут вверх дном.

Вероятно, для вас не составит затруднения объяснить причину столь странного на первый взгляд явления: центробежная сила, стремящаяся удалить вращающееся тело от центра, настолько велика в данном случае, что превышает силу тяжести – естественно, что вода не выливается.


Рис. 29. Вода не выливается из стакана, если заставить его достаточно быстро кружиться.


Напоминаю об этом общеизвестном опыте потому, что хочу предложить читателю задачу: с какою скоростью достаточно вращать стакан, чтобы развить центробежную силу, необходимую для успешности опыта?

Вычисление произвести совсем нетрудно, зная, что ускорение центробежной силы = >/>R, где v O скорость, а R – радиус круга. Мы хотим, чтобы это ускорение было не меньше ускорения, сообщаемого телу силою тяжести, т. е. не меньше 9,8 метра. Допустим для простоты, что длина веревки, на которой вращается наш стакан, равна 1-му метру. Тогда имеем равенство

>v²/>1 метр = 9,8 метра,

из которого ясно, что искомая скорость вращения v = √9,8 = 3,14 метра в секунду. Так как длина окружности, описанной радиусом в 1 метр, равна 6,28 метра, то чтобы вода не вылилась, наш стакан должен делать полный оборот в 2 секунды. Подобная быстрота вращения вполне достижима, и опыт обыкновенно удается без труда.

Заметьте, что при таком вращении вес стакана все время меняется: в верхней части пути вес его совершенно уничтожается центробежной силой; зато внизу он удваивается, так как здесь центробежная сила прибавляется к нормальному весу тела.

Вы выступаете в роли Галилея

Одно время для любителей сильных ощущений устраивалось весьма своеобразное развлечение – так называемая «чертова качель». В сборнике научных забав Федо оно описано так: