Рис. 2.1
Интеллект, определенный как способность к достижению сложных целей, не может быть измерен единственным показателем – IQ, а только целым их спектром, охватывающим все возможные цели. Каждая стрелка на рисунке показывает, насколько успешны лучшие из современных AI-систем в достижении различных целей, откуда ясно, что сегодня системы с искусственным интеллектом обнаруживают определенную узость: каждая система способна достигать только очень специфических целей. В отличие от этого, человеческий разум чрезвычайно широк: здоровый ребенок может успешно учиться практически всему на свете.
Совершенно естественно мы, люди, ранжируем сложность задач в соответствии с тем, насколько сложны они для нас самих, как показано на рис. 2.1. Но такой подход приводит к ложной картине сложности задач для компьютера. Нам кажется, что умножить 314 159 на 271 828 гораздо сложнее, чем опознать друга на фотографии, но компьютеры обошли нас в арифметике задолго до того, как я родился, а опознание людей по картинкам на человеческом уровне освоили совсем недавно. Тот факт, что элементарные сенсомоторные задания кажутся нам простыми, хотя требуют колоссальных вычислительных ресурсов, известен как парадокс Моравеца, который объясняется тем, что наш мозг легко отдает под их решение значительную часть хорошо приспособленного к этому нашего “харда”, головного мозга – как выясняется, больше четверти.
Мне нравится эта метафора у Ганса Моравеца, и я позволю себе ее небольшую вольную иллюстрацию (см. рис. 2.2){4}:
“Компьютеры – универсальные машины, и их потенциал равномерно покрывает безграничное разнообразие задач. Потенции людей, напротив, сосредоточены там, где от успеха зависит выживание, в более отдаленных областях они весьма слабы. Представьте себе “ландшафт человеческих компетенций”, где есть низины вроде “арифметики” и “механической памяти”, холмики вроде “шахмат” или “доказательства теорем” и горные пики, отмеченные указателями “перемещение с места на место”, “координация движений рук и глаза”, “социальное взаимодействие”. С совершенствованием компьютеров этот ландшафт словно наполняется водой: полвека назад она затопила низины, вымыв оттуда счетоводов и писцов, но оставив нас сухими. Сейчас вода дошла до холмиков, и обитатели наших аванпостов забеспокоились: куда бы им переместиться? Мы чувствуем себя в безопасности на своих пиках, но, учитывая скорость, с которой вода прибывает, она покроет и пики в ближайшие полвека. Я полагаю, нам уже пора начинать строить ковчеги и приучаться к жизни на плаву”.
Рис. 2.2
Диаграмма Моравеца “Ландшафт человеческих умений”, на которой рельеф представляет эти умения в зависимости от их сложности для компьютеров, а повышающийся уровень воды – то, чему компьютеры уже научились.
За десятилетия, прошедшие со времени написания этих строк, уровень воды неуклонно повышался в соответствии с предсказанием, и некоторые из холмиков (вроде шахмат) уже давно скрылись из виду. Что на очереди и как нам быть в связи с этим – вот в чем суть нашей книги.
По мере того как уровень воды повышается, в какой-то момент он может достичь критической отметки, за которой начнутся драматические перемены. Эта критическая отметка соответствует способности машин заниматься дизайном AI. До того как она достигнута, повышение уровня воды определяется деятельностью людей по улучшению компьютеров, но дальше машины начинают улучшать машины, по всей вероятности делая это намного успешнее, чем люди, и площадь суши, возвышающейся над водой, станет сокращаться намного быстрее. В этом и заключается спорная, но головокружительная идея