V = 1,5х10>8 м/с
для импульса с длительностью фронта
t>НАР = 1 нс
верхняя граница полосы пропускания линии f>В и длина волны 𝜆 будут иметь следующие значения:
f>В = 0,35/t>НАР = 350 МГц.
𝜆 = V/ f>В = 0,43 м
𝜆/10 = 4,3 см
Следовательно, сосредоточенным в данном случае можно считать элемент с геометрической длиной не более 4,3 см.
Для импульса высокоскоростного интерфейса с длительностью фронта равной 100 пс сравнивать размеры элемента нужно уже со значением 4,3 мм. И в этом случае выводные конденсаторы и даже чип компоненты размерами от 0805 и более (от 2 до 20 мм) можно считать распределенными.
Резистор
Конструктивно резистор представляет элемент с двумя выводами, который ограничивает поток зарядов, электрический ток. Основным параметром резистора является электрическое сопротивление, которое определяется удельным сопротивлением проводящего материала ρ>0, его длиной l и сечением S.
Резистор не накапливает электрическую или магнитную энергию. Он рассеивает ее в виде тепла в окружающее пространство. При протекании тока I через резистор сопротивлением R на его выводах создается разность потенциалов или падение напряжения, определяемое по закону Ома
U = IR
выделяется тепловая энергия
Q=I>2Rt
Сопротивление идеального резистора не зависит от частоты. Поэтому резистор не является реактивным элементом. При прохождении через резистор сигнал сохраняет свою форму. Возможно уменьшение его амплитуды. Причем это изменение амплитуды может происходить почти мгновенно, безынерционно.
Сопротивлением обладают и простые проводники, и полигоны печатной платы. Из-за отсутствия инерционных свойств и малых геометрических размеров их вклад в работу высокочастотных схем и конструкцию печатных плат часто имеет много меньшее значение по сравнению с вкладами инерционных элементов – конденсатора и катушки или эквивалента индуктивности, импеданс которых сильно зависит от частоты сигнала.
Катушка индуктивности
Конструктивно катушка индуктивности представляет электрический элемент в виде отрезка проводника, намотанного на некоторую оправу или сердечник. Основным параметром катушки является ее индуктивность L, определяющая количество запасенной энергии магнитного поля.
,где μ – магнитная проницаемость материала сердечника, μ >0 – магнитная проницаемость свободного пространства (при отсутствии магнитного поля и сердечника данными показателями можно пренебречь), N – число витков (для одиночного сигнального проводника линии передачи данный показатель не имеет значения), А или S – площадь поперечного сечения витка – данный параметр и параметр крутизны изгиба имеет определяющее значение для типового проводника, l – длина катушки
Индуктивностью обладает и прямой проводник. Ее значение можно определить по формуле:
,где l – длина проводника, d – диаметр проводника (в тех же единицах, что и l)
Индуктивность определяет энергию магнитного поля, созданного электрическим током в проводнике, изгибе проводника или контуре. Энергия магнитного поля, накопленная в индуктивности, определяется выражением
Индуктивность катушки пропорциональна значению магнитной проницаемости μ сердечника, на который она установлена.
Импеданс индуктивности Z (сопротивление, зависящее от частоты) при постоянном токе равен нулю или, точнее, омическому сопротивлению образующего ее проводника.
С ростом частоты импеданс индуктивности увеличивается.
Нулевое значение импеданса на постоянном токе и его увеличение с ростом частоты делают эффективными установку катушек и дросселей последовательно в цепь питания для обеспечения фильтрации (высокочастотные составляющие претерпевают при прохождении через индуктивность значительное ослабление). Это позволяет без потерь передавать постоянный ток от источника питания в нагрузку и препятствует нежелательному прохождению высокочастотных составляющих спектра сигнала (возможных пульсаций, помех).