3

Octave online. – https://octave-online.net/ (2017-04-01).

4

Octave download. – https://www.gnu.org/software/octave/download.html (2017-04-01).

5

The Artificial Intelligence (AI) White Paper. – https://www.iata.org/contentassets/b90753e0f52e48a58b28c51df023c6fb/ai-white-paper.pdf (2021-02-23).

6

Nguyen G. et al. Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: A survey // Artificial Intelligence Review. – 2019. – Т. 52. – № 1. – С. 77–124.

7

Joseph A. Cruz and David S. Wishart. Applications of Machine Learning in Cancer Prediction and Prognosis // Cancer Informatics. – 2006. – Vol. 2. – P. 59–77.

8

Miotto R. et al. Deep learning for healthcare: Review, opportunities and challenges // Briefings in Bioinformatics. – 2017. – Т. 19. – № 6. – С. 1236–1246.

9

Ballester, Pedro J. and John BO Mitchell. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking // Bioinformatics. – 2010. – Vol. 26. – № 9. – P. 1169–1175.

10

Mahdavinejad, Mohammad Saeid, Mohammadreza Rezvan, Mohammadamin Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P. Sheth. Machine learning for Internet of Things data analysis: A survey // Digital Communications and Networks. – 2018. – Vol. 4. – Issue 3. – P. 161–175.

11

Farrar, Charles R. and Keith Worden. Structural health monitoring: A machine learning perspective. – John Wiley & Sons, 2012. – 66 p.

12

Lai J. et al. Prediction of soil deformation in tunnelling using artificial neural networks // Computational Intelligence and Neuroscience. – 2016. – Т. 2016. – С. 33.

13

Liakos, Konstantinos et al. Machine learning in agriculture: A review // Sensors. – 2018. – 18(8). – P. 2674.

14

Friedrich Recknagel. Application of Machine Learning to Ecological Modelling // Ecological Modelling. – 2001. – Vol. 146. – P. 303–310.

15

Татаринов В. Н., Маневич А. И., Лосев И. В. Системный подход к геодинамическому районированию на основе искусственных нейронных сетей // Горные науки и технологии. – 2018. – № 3. – С. 14–25.

16

Clancy, Charles, Joe Hecker, Erich Stuntebeck, and Tim O′Shea. Applications of machine learning to cognitive radio networks // Wireless Communications, IEEE. – 2007. – Vol. 14. – Issue 4. – P. 47–52.

17

Ball, Nicholas M. and Robert J. Brunner. Data mining and machine learning in astronomy // Journal of Modern Physics D. – 2010. – Vol. 19. – № 7. – P. 1049–1106.

18

R. Muhamediyev, E. Amirgaliev, S. Iskakov, Y. Kuchin, E. Muhamedyeva. Integration of Results of Recognition Algorithms at the Uranium Deposits // Journal of ACIII. – 2014. – Vol. 18. – № 3. – P. 347–352.

19

Амиргалиев Е. Н., Искаков С. Х., Кучин Я. В., Мухамедиев Р. И. Методы машинного обучения в задачах распознавания пород на урановых месторождениях // Известия НАН РК. – 2013. – № 3. – С. 82–88.

20

Chen Y., Wu W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data // Geochemistry: Exploration, Environment, Analysis. – 2017. – Т. 17. – № 3. – С. 231–238.

21

Hirschberg J., Manning C. D. Advances in natural language processing // Science. – 2015. – Т. 349. – № 6245. – С. 261–266.

22

Goldberg Y. A primer on neural network models for natural language processing // Journal of Artificial Intelligence Research. – 2016. – Т. 57. – С. 345–420.

23

Под методом машинного обучения мы будем понимать реализацию алгоритма или некоторой модели вычислений, которая решает задачу классификации, регрессии или кластеризации с использованием «обучающихся» алгоритмов.

24

Taiwo Oladipupo Ayodele. Types of Machine Learning Algorithms // New Advances in Machine Learning. – 2010. – P. 19–48.

25

Hamza Awad Hamza Ibrahim et al. Taxonomy of Machine Learning Algorithms to classify realtime Interactive applications // International Journal of Computer Networks and Wireless Communications. – 2012. – Vol. 2. – № 1. – P. 69–73.

26

Muhamedyev R. Machine learning methods: An overview // CMNT. – 2015. – 19(6). – P. 14–29.

27

Goodfellow I. et al. Deep learning. – Cambridge: MIT press, 2016. – Т. 1. – № 2.

28

Nassif A. B. et al. Speech recognition using deep neural networks: A systematic review // IEEE Access. – 2019. – Т. 7. – С. 19143–19165.

29

Hastie T., Tibshirani R., Friedman J. Unsupervised learning. – New York: Springer, 2009. – P. 485–585.

30

Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas. Supervised machine learning: A review of classification techniques // Emerging Artificial Intelligence Applications in Computer Engineering. – IOS Press, 2007. – P. 3–24.

31

Jain A. K., Murty M. N., Flynn P. J. Data clustering: A review // ACM computing surveys (CSUR). – 1999. – Т. 31. – № 3. – С. 264–323.

32

Wesam Ashour Barbakh, Ying Wu, Colin Fyfe. Review of Clustering Algorithms. Non-Standard Parameter Adaptation for Exploratory Data Analysis // Studies in Computational Intelligence. – 2009. – Vol. 249. – P. 7–28.

33

Mukhamediev R. I. et al. From Classical Machine Learning to Deep Neural Networks: A Simplified Scientometric Review //Applied Sciences. – 2021. – Т. 11. – №. 12. – С. 5541.

34

Мухамедиев Р. И. Методы машинного обучения в задачах геофизических исследований. – Рига, 2016. – 200 с. – ISBN 978-9934-14-876-7.

35

Дьяконов А. Г. Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab (Практикум на ЭВМ кафедры математических методов прогнозирования): учебное пособие. – М.: Изд. отдел факультета ВМК МГУ им. М. В. Ломоносова, 2010.

36

Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast supervised learning // Neural Networks. – 1993. – Vol. 6. – Issue 4. – P. 525–533.

37

Dong C. Liu, Jorge Nocedal. On the limited memory BFGS method for large scale optimization // Mathematical Programming. – 1989. – Vol. 45. – Issue 1–3. – P. 503–528.

39

Warren S. McCulloch, Walter Pitts. A logical calculus of the ideas immanent in nervous activity // The bulletin of mathematical biophysics. – 1943. – Vol. 5. – Issue 4. – P. 115–133.

40

Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain // Psychological Review. – 1958. – Vol. 65 (6). – P. 386–408.

41

Minsky M. L., Papert S. A. Perceptrons: An Introduction to Computational Geometry. – MIT, 1969. – 252 p.

42

Marvin Minsky, Seymour Papert. Perceptrons, expanded edition. – The MIT Press, 1987. – 308 p.

43

Werbos P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. – Harvard University, 1974. – 38 p.

44

Werbos P. J. Backpropagation: past and future // IEEE International Conference on Neural Networks. – San Diego, 1988. – Vol. 1. – P. 343–353.

45

Нейрокомпьютеры: учеб. пособие для вузов. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2004. – 320 с.

46

Галушкин А. И. Решение задач в нейросетевом логическом базисе // Нейрокомпьютеры: разработка, применение. – М.: Радиотехника, 2006. – № 2. – С. 49–71.

47

Ясницкий Л. Н. Введение в искусственный интеллект: учебное пособие для вузов. – М.: Академия, 2008. – 176 с.

48

Галушкин А. И. Нейронные сети: основы теории. – Горячая линия – Телеком, 2010. – 496 с.

49

50

David Saad. Introduction. On-Line Learning in Neural Networks. – Cambridge University Press, 1998. – P. 3–8.

51

Cybenco G. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals, and Systems. – 1989. – Vol. 4. – P. 304–314.

52

Hornik K. et al. Multilayer feedforward networks are universal approximators // Neural Networks. – 1989. – Vol. 2. – P. 359–366.

53

Schmidhuber, Jürgen. Deep learning in neural networks: An overview // Neural Networks. – 2015. – Vol. 61. – P. 85–117.

54

http://www.asimovinstitute.org/neural-network-zoo/ – THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, 2016 BY FJODOR VAN VEEN

55

Werbos P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. – Harvard University, 1974. – 38 p.

57

Обучи свою первую нейросеть: простая классификация. – https://www.tensorflow.org/tutorials/keras/classification

58

Dudani, Sahibsingh A. The Distance-Weighted k-Nearest-Neighbor Rule // Systems, Man, and Cybernetics. – 1976. – Vol. SMC-6. – Issue 4. – P. 325–327.

59

K-Nearest Neighbors algorithm. – http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm (2012-07-05).

60

Support vector machine. – http://en.wikipedia.org/wiki/Support_vector_machine (2012-02-22).

62

Коллаборативная_фильтрация. – ru.wikipedia.org/wiki/Коллаборативная_фильтрация; https://en.wikipedia.org/wiki/Collaborative_search_engine

63

Friedman, Jerome H. Greedy function approximation: a gradient boosting machine // Annals of Statistics. – 2001. – P. 1189–1232.

65

Pearson K. On lines and planes of closest fit to systems of points in space // Philosophical Magazine. – 1901. – Vol. 2. – P. 559–572.

66

Sylvester J. J. On the reduction of a bilinear quantic of the nth order to the form of a sum of n products by a double orthogonal substitution // Messenger of Mathematics. – 1889. – Vol. 19. – P. 42–46.